Oct 15

Warm-up

1)

Lily ate
$$\frac{2}{5}$$
 of a pizza, and her brother ate $\frac{1}{3}$ of the same pizza. How much of the pizza did they eat together? $\frac{2}{5}$, $\frac{1}{3}$, $\frac{5}{3}$; $\frac{5}{3}$, $\frac{10}{6}$, $\frac{15}{9}$, $\frac{2}{12}$, $\frac{15}{15}$, $\frac{2}{15}$, $\frac{2}{15}$, $\frac{3}{15}$, $\frac{3}{15}$, $\frac{5}{15}$, $\frac{10}{15}$, $\frac{15}{15}$, $\frac{2}{15}$, $\frac{15}{15}$,

2)

David pours $\frac{3}{8}$ of a liter of water into a bottle in the morning and adds another $\frac{1}{4}$ of a liter in the afternoon. How much water is in the bottle now?

MODELLING FRACTION ADDITION WITH AREA MODELS

STEPS:

- 1. Create an area model for the both fractions in the addition equation
 - > Use horizontal lines for one area model, and vertical lines for the other
- 2. Cut both area models into the denominator of the other fraction using lines going the opposite way.
 - > This will give you two equivalent fractions with common denominators.
- 3. Count up the number of squares in one area model to get the denominator, and the TOTAL number of SHADED squares to get your numerator.

EXAMPLE:

$$\frac{\frac{1}{2} + \frac{4}{5}}{\frac{10}{10}}$$
 $\frac{\frac{13}{10}}{\frac{13}{10}}$

Let's try these together (copy it down)

(a)
$$\frac{3}{7} + \frac{5}{9}$$

(b)
$$\frac{4}{6} + \frac{2}{5}$$

Try these on your own!! Model with an area model

1) $\frac{1}{2} + \frac{1}{4}$

2) $\frac{2}{3} + \frac{1}{6}$

3) $\frac{1}{5} + \frac{2}{10}$

Try these on your own!! Model with an area model

4)
$$\frac{3}{4} + \frac{2}{5}$$

5)
$$\frac{1}{3} + \frac{4}{9}$$

6)
$$\frac{5}{12} + \frac{7}{18}$$

Eureka Adding Unlike Fractions Using the Rectangular Fraction Model Area Module - 1. pdf