Homework

Solutions

- 1. Identify the base of each power.

- **a)** 6^3 **b)** 2^7 **2 c)** $(-5)^4$ **-5 d)** 7^0 **7**
- 2. Use repeated multiplication to show why 35 is not the same as 53.

$$3^5 = 3 \times 3 \times 3 \times 3 \times 3$$

= 243

 $5^3 = 5 \times 5 \times 5$ = 125

Complete this table.

Power	Base	Exponent	Repeated Multiplication	Standard Form	
44	4	ч	4 ×4×4×4		
10 ³	lo	3	loxlox10	1000	
142	14	2	14×14	196	
15	ı	5	$1 \times 1 \times 1 \times 1 \times 1$	l l	
٩٤	9) 6	429292929	531 441	
5	5)	5x5x5x5x5x5x5	78 125	

- Write each product as a <u>power</u>, <u>then</u> <u>evaluate</u> (standard form).

- 5. Find the missing exponent. (Show_work)
 - a) $7\sqrt{3} = 16\ 807$ b) $2\sqrt{3} = 32$ c) $2\sqrt{7} = 128$ d) $3\sqrt{9} = 81$ e) $9\sqrt{9} = 81$

- a) 7x7 = 49
 - 7x 7x 7 = 343
- b) $2 \times 2 = 4$ $2 \times 2 \times 2 = 8$
- $2 \times 2 \times 2 = 8$

c) $2 \times 2 = 4$

- 7x7x7x7 = 2401
- $2 \times 2 \times 2 \times 2 = 16$

- 7x7x7x7x7 = 16807
- 2 x2 x2 x2 = 16
- 2 x 2 x 2 x 2 x 2 = 32
- 2 x 2 x 2 x 2 x 2 = 32 2 x 2 x 2 x 2 x 2 = 64 2 x 2 x 2 x 2 x 2x 2x 2x2 = 128
- d) $3 \times 3 = 9$
- e)9x9=81
- $3 \times 3 \times 3 = 27$
- 3x3x3 = 81
- **6.** Find the missing base.
 - a) $4^{3} = 64$ b) $7^{2} = 49$ c) $1^{5} = 1$ d) $4^{3} = 729$

- 7. Evaluate each of the following. What do you notice?
 - a) 10^2
- **b**) 10³
- c) 10⁵
- d) 10⁶
- 1 000 000 100 000 1000 The exponent on the 10 is the number of zeros that appear in
- 8. Place $a \le 0$ or = in the box. (Show your calculations)
 - 128 216

standard form

- a) $2^7 \ 6^3$ b) $4^3 = 2^6$ c) $9^3 \ 3^5$ d) $7^3 \ 6^5$
 - 64 64 729 243 343 7776

What do we notice?

$$3^1 = 3$$

$$10^1 = 10$$

$$12^1 = 12$$

$$17^1 = 17$$

$$99^1 = 99$$

Exponents

Whenever you have an exponent of 2, it is said to be squared. 3^2 might be read as 3 squared.

Whenever you have an exponent of 3, it is said to be cubed. 5^3 might be read as 5 cubed.

If the base is raised to the exponent 1, then the answer will always be the base itself.

examples: $15^{1} = 15$

 $24^1 = 24$ 6 $893^1 = 6893$

If the base is raised to the exponent 0, then the answer will always be 1.

examples: $26^0 = 1$ $147^0 = 1$

 $945^0 = 1$

How do you know if a given area will make a square?

You will form a square if 2 of the factors are the same, for example an area of 25 cm^2 forms a square because $25 = 5 \times 5$

Squares and Perfect Squares

- Ex 2) Can you form squares with the following areas?
 - (a) 18 cm^2

Square all sides

equal

- (b) 25 cm^2
- (c) 100 cm^2 (d) 60 cm^2

sides are

not equal

- a) No, there is no number you can multiply by itself to get 18
 - b) Yes, forms a square, 5 x 5=25
 - C) Yes because $10 \times 10 = 100$
 - d) No, can not form a square, there is no number you multiply by itself to get 60

How do you know if a given area will make a square?

You will form a square if 2 of the factors are the same, for example an area of 25 cm^2 forms a square because $25 = 5 \times 5$

Notes

"To Square a number" - Multiplying a number by itself

Example: "The square of 5" is $5 \times 5 = 25$

Thus

$$5^2 = 25$$

$$5^2 = 5x5 = 25$$

25 is a square number or Perfect Square

Example 4:

use graph paper

Show that 36 is a square number. Use a diagram, symbols and words.

NOTES:

How can you find all of the perfect squares of the numbers between 1 and 250?

Multiply the same numbers to get a perfect square.

8	Multiply the sume number			
Side length	LxW		Perfect Square(Area)	
•	1 × 1	п	1	
2	2 x 2	Ξ	. 4	
3	3 x 3	Ξ	(9	
4	4 × 4	=	16	
5	5 x 5	Ξ	25	
6	6 x 6	Ξ	36	
7	7×7	Ξ	49	
7 8 9	8 x 8	=	64	
9	9 x 9	Ξ	81	
P	10 x 10	=	100	
11	11 × 11	Ξ	121	
13	12 x 12	=	<i>,</i> 144	
13	13 x 13	=	169	
14	14 × 14	=	196	
15	15 x 15	=	125	
•				

Perfect Squares

Ex. 5) A square has area of 144 cm². Find the perimeter of the square.

(Always include a diagram...doesn't have to be on graph paper if it doesn't ask for graph paper....so sketch)

Fass/Homework

Page 8

(#5)#6(don't use tiles sketch rectangles);

##(Use graph paper),(if you don't have graph paper write out factors)

##(Use graph paper), (if you don't have graph paper write out factors)

##(Use graph paper), (if you don't have graph paper write out factors)

##(Use graph paper), (if you don't have graph paper write out factors)

##(Use graph paper), (if you don't have graph paper write out factors)

How can you find all of the perfect squares of the numbers between 1 and 250?

WS 2.3 Powers (Sept. 6 Homework).pdf

WS 2.3 Powers Soultions pdf.pdf