Date: March 2020•

1. Each questions (written in italics) can be improved.
*Write a better question for each.
*Explain why you think it is better.

Ex) To discover how many people in their class enjoys certain tv shows.

Do you watch The Simpsons or Family Guy?

2. Given data in a chart, you must do the following

Ex) Kim recorded the number of times her classmates went to the theater for the first 5 months. Below is the data

Month	\# of time to theater
Jan	15
Feb.	6
March	26
April	12
May	5

- Use grid paper. Draw a graph to show this data
- Explain why you choose this graph
- Make 2 conclusions about the graph

(Review notes on which graphs to use (choosing graphs) and when to connect dots or leave as dots)

3. (Fred surveyed the middle school students to answer this question(His data is below)

What pet do you have at home?
This table show the data she collected.

Subject	Number of students
Dog	50
Cat	45
Fish	22
hamster	20
other	15

a. What type of graph would you choose for this data
b. Why would you choose this graph type over others?
4. Theoretical probability

Ex) Include probability statements or full value will not be granted. Reduce Fractions Kevin places 6 yellow, 5 green, 2 blue, and 7 red tiles in a bag. He picks one tile without looking. What is the theoretical probability of drawing each color?
(For the test if Given a spinner what is the probability of choosing a certain sector. (list the possible outcomes, find the theoretical probability of outcome)) Look at examples in warmups \& hW
5) Experimental probability

Ex) Jim actually tosses a coin 50 times and he recorded that heads showed up 27 times.
a) How many times did tails show up?
b) Is the probability of landing on heads close to the theoretical probability?
c) If he tossed the coin 100 times what would you think the probability of landing on heads would be? And why?
6) JUST STUDY the following -Know that to determine if a game is fair, one must have equal opportunity to win as to loose.
(Given an example of a game you will have to find the probability of each outcome and determine if the game is fair)

