1. State the number of significant digits
a. 431.925
d. 43002
b. 0.004303
e. $0.6700 \quad 4$
c. 20014
f. 2000.0037
2. Answer in the proper number of significant digits
a. $815 / 2.3$
b. $5.6 \times 0.045 \times 2.83$
(a) $354.3478261=350$
(b) $0.71316=0.71$
3. Convert $1.7 \mathrm{~m} / \mathrm{s}$ to km / h

$$
\begin{aligned}
& 1.7 \mathrm{~m} \div 10 \div 10 \div 10 \mathrm{~km}=\frac{0.0017}{1 \mathrm{~s}} \frac{0.000277777 \ldots}{160 \div 60 \mathrm{~h}}=6.12 \frac{\mathrm{~km}}{\mathrm{~h}} \\
& \frac{1.7 m}{\mathrm{~s}} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=6.12 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

4. On a time-velocity graph, periods of no acceleration have what slope?

5. a. Sketch a distance time graph showing constant velocity
b. Sketch a distance time graph showing no velocity
c. Sketch a velocity time graph showing constant acceleration

6. A car travels at a speed of $23.6 \mathrm{~m} / \mathrm{s}$. If the driver traveled for 32.4 s , find the distance covered?

$$
\text { ๑. } \begin{aligned}
v & =23.6 \mathrm{~m} / \mathrm{s} \\
t & =32.4 \mathrm{sec} \\
d & =?
\end{aligned}
$$

$$
d=v t
$$

$$
23.6 \frac{\mathrm{~m}}{\mathrm{~s}} \times 32.4 \mathrm{~s}
$$

$$
=764.64 \mathrm{~m}
$$

$$
=765 \mathrm{~m}
$$

7. A horse cantering across a field at $3.00 \mathrm{~m} / \mathrm{s}$ is scared by a sudden noise and rapidly increases its pace. After 3.5 s , it is running at $5.4 \mathrm{~m} / \mathrm{s}$. find its average acceleration.
8. $a=$?
$v_{i}=3.00 \mathrm{~m} / \mathrm{s}$
$a=\frac{v_{f}-v_{i}}{t}$
$v_{f}=5.4 \mathrm{~m} / \mathrm{s}$
$=\frac{5.4-3.00}{3.5 \mathrm{sec}}$
$\int \begin{gathered}0.6857 \mathrm{~m} / \mathrm{s}^{2} \\ 0.69 \mathrm{~m} / \mathrm{s}^{2}\end{gathered}$
9. a. A van travels a distance of 31500 m in 56 minutes. Calculate the speed in m / s.
b. What is the speed in km / h
$34 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& \text { B. } d=31500 \mathrm{~m} \text {, } 56 \mathrm{~min} \times 60 \mathrm{sec} \quad V=\frac{d}{t} \\
& \begin{array}{lll}
t=56 \mathrm{minj} 3 & 5 \mathrm{~min} \times \frac{6 \mathrm{sec}}{1 \mathrm{mmc}} & =\frac{d}{t} \\
v=? \mathrm{~m} / \mathrm{s} & -336 \mathrm{sec} & =\frac{31500 \mathrm{~m}}{3360 \mathrm{sec}}
\end{array} \\
& \begin{aligned}
V=? \mathrm{~m} / \mathrm{s} \quad \because 3360 \mathrm{~S} \quad & =\frac{3500 \mathrm{C}}{3360 \mathrm{Ce}} \\
& =9.375 \mathrm{~m} / \mathrm{s}
\end{aligned} \\
& \left(b, 9.375 . \frac{\mathrm{m}}{\mathrm{~s}} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \times \frac{3600}{1 \mathrm{hr}}=33.75 \mathrm{~km} / \mathrm{h}=1 \frac{9.375 \mathrm{~m} \div 10 \div 10 \div \mathrm{O}}{15 \div 60 \div 60}\right.
\end{aligned}
$$

9. Two cars travel the same distance. The first car travels at a speed of $39 \mathrm{~m} / \mathrm{s}$ for 19 s and the second car travels for 14 s . Calculate the speed of the second car in m / s.
10.

distance
cant
$v=39 \mathrm{~m} / \mathrm{s}$
$t=195 \mathrm{c}$
$d=$?
$d=v t$
$=39 \mathrm{~m} \times 19 \mathrm{~s}$
$=7 \mathrm{~S} 1 \mathrm{~m}$
second car
$d: 741 \mathrm{~m}$
$v: ?$
$t=14 \mathrm{sec}$
$v=\frac{d}{t}$ $=\frac{741 \mathrm{~m}}{14 \mathrm{sec}}$

$$
=52.929 \mathrm{~m} / \mathrm{s}
$$

$53 \mathrm{~m} / \mathrm{s}$
10. A last minute shopper strides briskly at $0.3 \mathrm{~m} / \mathrm{s}$ through a mall toward a music store. Noticing the clerk starting to move the CD displays inside the store entrance and close the store, the shopper begins to speed walk and in 4 s in moving at $0.8 \mathrm{~m} / \mathrm{s}$. Find the average acceleration
10.

$$
\begin{aligned}
& v_{i}=0.3 \mathrm{~m} / \mathrm{s} \\
& \gamma_{f}=0.8 \mathrm{~m} / \mathrm{s} \\
& t=4=4 \mathrm{~s} \\
& a=?
\end{aligned}
$$

$$
\begin{aligned}
a= & \frac{V_{f}-V_{i}}{t} \\
= & \frac{0.8 \frac{\mathrm{n}}{\mathrm{~s}} \cdot 0.3 \mathrm{~m} / \mathrm{s}}{4 \mathrm{sec}} \\
= & 0.125 \mathrm{~m} / \mathrm{s}^{2} \\
& 0.1 \mathrm{~m} / \mathrm{s}^{2} \quad 1 \mathrm{sign} . \text { digit }
\end{aligned}
$$

11. After accelerating at a rate of $0.25 \mathrm{~m} / \mathrm{s}^{2}$ for 8 s , a frog is swimming at $0.3 \mathrm{~m} / \mathrm{s}$. What was its initial speed?

$$
\text { 11. } \begin{array}{rlrl}
v_{i} & =? & V_{i} & =v_{f}-a t \\
v_{f} & =0.3 \mathrm{~m} / \mathrm{s} \\
a=0.25 \mathrm{~m} / \mathrm{s}^{2} & & =0.3 \frac{\mathrm{~m}}{\mathrm{~s}}-0.25 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 8 \mathrm{sec} . \\
t=8 \mathrm{sec} . & & =-1.7 \mathrm{~m} / \mathrm{s} \\
& & =-2 \mathrm{~m} / \mathrm{s}
\end{array}
$$

12. How long would it take a coyote accelerating at $0.8 \mathrm{~m} / \mathrm{s}^{2}$ to increase its speed from $0.7 \mathrm{~m} / \mathrm{s}$ to $4.2 \mathrm{~m} / \mathrm{s}$?
13. $t=?$

$$
\begin{aligned}
& V_{i}=0.7 \mathrm{~m} / \mathrm{s} \\
& V_{f}=4.2 \mathrm{~m} / \mathrm{s} \\
& a=0.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& t=\frac{V_{f}-V_{i}}{a} \\
&=\frac{4.2 \mathrm{~m} / \mathrm{s}-0.7 \mathrm{~m} / \mathrm{s}}{0.8 \mathrm{~m} / \mathrm{s}^{2}} \\
&=4.375 \mathrm{sec} \\
& w r .1
\end{aligned}
$$

13. A stunt man drops from the top of a building. If he accelerates at $-9.8 \mathrm{~m} / \mathrm{s}^{2}$ and hits a hugh air mattress on the ground in 8 seconds, what is his final velocity.
14.

$$
\begin{array}{rlrl}
a=-9.8 \mathrm{~m} / \mathrm{s}^{2} & V_{f} & =V_{i}+a t \\
t & =8 \mathrm{sec} \\
V_{i} & =0 \mathrm{~m} / \mathrm{s} & & =0 \mathrm{~m} / \mathrm{s}+-9.8 \mathrm{~m} / \mathrm{s}^{\times 8 \mathrm{sec}} \\
V_{f} & =? & & =-78.4 \mathrm{~m} / \mathrm{s} \\
& & & -80 \mathrm{~m} / \mathrm{s}
\end{array}
$$

14. A car moving at $60 \mathrm{~km} / \mathrm{h}$ accelerates to $95 \mathrm{~km} / \mathrm{h}$ in 0.15 hours. How far will the car travel as it accelerates.?

* distance

 from acceleration!area under curve!
15. Describe the motion displayed by the following graphs

16. a. Determine Bob and Sue's Speed
b. Who travelled the farthest?
c. Who travelled the longest?
a) Speed: $\begin{aligned} \text { Bob } m_{2,0)} & =\frac{50-0}{8-2} \\ (8,50) & =\frac{50 \mathrm{~m} / \mathrm{sec}}{60} \\ & =8.3 \mathrm{~m} / \mathrm{s}\end{aligned}$

$\begin{aligned} & \text { Sue e } m(0,0)=\frac{50-0}{12-0}=\frac{50}{12} \\ & \text { Speed } \\ &(12,50)=4.16 \mathrm{~m} / \mathrm{s}\end{aligned}$
Time (sec)
(h) They both travelled 50 m
(same distance)
(c) Sue travelled 125, $\left.\begin{array}{c}\text { Bob travelled es sec }\end{array}\right\}$ Sue longest

18. A skunk walking at $0.2 \mathrm{~m} / \mathrm{s}$ begins to accelerate as it travels 32.5 m farther along a trail. If its period of acceleration is 50 sec , what is its final speed?
$V_{i}=0.2 \mathrm{~m} / \mathrm{s}$? How to you get distance when $V_{f}=$? something is accelerating?
$d=32.5 \mathrm{~m}$
(Area under curve)
$t=50 \mathrm{sec}$

$$
\begin{aligned}
A_{1} & =50(0.2) \\
& =10 \\
A_{2} & =\frac{1}{2}(50) h \\
22.5 & =25 h \\
\frac{22.5}{25} & =h \\
0.9 & =h
\end{aligned}
$$

19. The graph on the right represents the velocity of an object over a 12 hour trip.
a. the average acceleration from 6 to 9 hours?
b. the average acceleration from| 0 to 2 hours.
c. How far did the car travel from 2 to 6 hours
d. The total distance travelled during the entire journey

20. (a). $\begin{aligned} m_{(6,120)} & =\frac{120-60}{6-9} \\ (9,60) & =\frac{60}{-3}\end{aligned}$
(b) $m_{(0,0)}=\frac{120-0}{2-0}$
(2,120)
$=60 \mathrm{~km} / \mathrm{h}^{2} \quad$ change this to velocity $(\mathrm{km} / \mathrm{h})$
$=-20 \mathrm{~km} / \mathrm{m}^{2}$
(c) 2 to 6 hrs
Area $=b h$
$=4(120)$
$=480 \mathrm{~km}$
(d) Total Area $=1050 \mathrm{~km}$
21. Differentiate between an scalar and a vector quantity. Give an example of each

Scalar $=$ magnitude only $($ size $) \quad$ Ex:50km
vector $=$ magnitude (size)) direction $\begin{aligned} & \text { Ex: } \\ & 50 \mathrm{~km} \text { North }\end{aligned}$
21. An actor walks 23 feet stage right and then 15 feet and finally 3 feet stage left.

Find the resultant displacement

