Unit One: Linear Inequalities
Unit ine Seniaut onequalities
(a)

$$
\begin{aligned}
& 4 x-7 y=6 \\
& 2 x+y=12
\end{aligned}
$$

(1) $\quad 4 x-7 y=6$
(2) $17 \quad 14 x+7 y=84$
$D+(2)$

$$
18 x=90
$$

$$
x=5
$$

sub

$$
\begin{aligned}
4(5)-7 y & =6 \\
20-7 y & =6 \\
-7 y & =-14 \\
y & =2
\end{aligned}
$$

$(5,2)$

$$
\begin{aligned}
& \text { (b) } \begin{aligned}
6 x-2 y & =-3 \\
5 x+3 y & =19
\end{aligned}, ~=10
\end{aligned}
$$

0×3	$18 x-15 y=-9$

(2) (1) 5 (1) $\quad \frac{25 x+15 y=95}{43 x=86}$
$\operatorname{sub} x=2$
5(2) $r 3 y=19$
$10+3 y=19$
$3 y=9$
$3 y=9$
$y=3$
$(2,3)$
(c) $3(x+4)-4(y+1)=7$

$$
x-9=y
$$

(1) $3 x+12-4 y-4=7$
(1) $3 x-4 y=-1$
(2) $x-y=9$
(1) $3 x-4 y=-1$
(2) $\times 3 \quad 3 x-3 y=27$
(1) -(2)

$$
y=28
$$

sub (2) $x-28=9$ $x=37$
2. Graph the inequality:
c. $y<\frac{3}{4} x-4$
a. $y>-4 x+5$

d. . $x \geq 2 y$ Reuranay
b. $3 x-4 y \leq-24$

$$
\begin{aligned}
& (0,6) \\
& (-8,0)
\end{aligned}
$$

3. Given the following constraints, graph each:

$$
\text { q. } \begin{aligned}
& x \in R, y \in R \\
x & \leq 7 \quad \vee \\
& y>-5 \\
& y>-\frac{1}{3} x \\
& 2 x+3 y \geq 18
\end{aligned}
$$

3b. $x \geq 0$

$$
y \geq 0
$$

$$
x>300
$$

$$
y \leq 700
$$

$$
6 x+4 y \geq 24
$$

$$
3 x+4 y<36
$$

4. In order to ensure optimal health for your puppy
a lab technician recommends to feed the pup a daily diet containing a minimum of 24 grams (g) of fat,
36 g of carbohydrates, and 4 g of protien.
The pup should be fed no more than five ounces of food a day.
Rather than order food that is custom-blended, it is cheoper to order Food A and Food B, and blend them for an optimal mix.
Food X contains 6 g of fat, 12 g of carbohydrates, and 2 g of protein per ounce, and costs $\$ 0.20$ per ounce.
Food Y contains 12 g of fat, 12 g of carbohydrates, and 1 g of protein per ounce, at a cost of $\$ 0.30$ per ounce.
What is the optimal blend?

Constraints

fat: $\quad 6 x+12 y \geq 24$
carbs: $12 x+12 y \geq 36$
protein: $2 x-1 y \geq 4$
the maximum weight of the
food is five ounces, so: $x-y \leq 5$
Optimization optimization equation wll be the cost relation $C=0.2 \mathrm{x}-0.3 \mathrm{y}$. and we need the minimum value

Minimuns $(4,0)=0.8$

2 of Food X

1 of Food Y

5. For every bouquet that is sold at a fundraising banquet, $\$ 5$ goes to charity. For every ticket that is sold, $\$ 18$ gees to charity. The organizers' goal is to raise at least $\$ 8000$. The organizers need to know how many bouquets and tickets must be sold to meet their goal.
a) Define the variables and write a linear inequality to represent the situation.
b) Graph the linear inequality. The first coordinate is the number of bouquets and the second is the number of tickets.

$$
\begin{aligned}
& x= \pm \text { bouquet } \\
& y= \pm \text { tickets } \\
& 5 x+18 y \geq 8000 \\
& x \\
& 0 \\
& 1600
\end{aligned}
$$

b. $x=\#$ high school querns

$$
y=* \text { university friends }
$$

$$
x+y \leq 375
$$

$$
x \geq 2 y
$$

7. $x=\#$ hot doge
$y=\#$ hamburgers
$x+y \leq 300$
$x \leq 250$
$y \leq 125$
optimization $3 x+2 y$
8. Hownhill Cussicourtiy

Assembly	$2 x$	$1 y$	≤ 40
Finish	$1 x$	$1 y$	≤ 32

$$
\begin{array}{cc}
2 x+y \leq 40 & x \geq 0 \\
x+y=32 & y \geq 0 \\
\text { opthinization } & 70 x+50 y \\
70 x-1 & 50
\end{array}
$$

$(0,32)=70(0)+50(32)=1600$,
$(8,24)=70(8)+50(24)=1760^{\circ} 5$
$(20,0)=70(20)+80)(0)=$

Unit 2: Quadratics

1.

$y=-7 x^{2}-126 x-700$
$y=-7\left(x^{2}+18 x\right)-700$ $y=-7\left(x^{2}+18 x+81-81\right)-700$ $y=-7\left(x^{2}+18 x+81\right)+567-700$
$y=-7(x+9)^{2}-133$
opens down

$$
(-9 ;-133)
$$

$$
\text { range } y \leq-133
$$

$$
\max \text { of }-133
$$

$$
y \text {-int }-700
$$

c. $y=\frac{1}{5} x^{2}+4 x+24$

$$
y=\frac{1}{5}\left(x^{2}+20 x\right)+24
$$

$$
y=\frac{1}{5}\left(x^{2}+20 x+100-100\right)+24
$$

$$
y=\frac{1}{5}\left(x^{2}+20 x+100\right)-20+24
$$

$$
4=\frac{1}{5}(x+10)^{2}+4
$$

opens up
($-10,4$)
range $y \geqslant 4$
mun of 4
y-int 24
b. $y=9.5 x^{2}-76 x+141$
$y=9.5\left(x^{2}-8 x\right)+141$

$$
y=9.5\left(x^{2}-8 x+16-16\right)+141
$$

$$
y=9.5\left(x^{2}-8 x+16\right)-152+141
$$

$$
y=9.5(x-4)^{2}-11
$$

opens up

$$
(4,-11)
$$

range $y \geq-11$
\min of -11
4 -int 141
d. $y=11 x^{2}-22 x-4$
$y=11\left(x^{2}-2 x\right)-4$
$y=11\left(x^{2}-2 x+1-1\right)-4$
$y=11\left(x^{2}-2 x+1\right)-11-4$ $y=11(x-1)^{2}-15$
opens up
$(1,-15)$
range $y \geq-15$
min of -15
y-int -4
2. Fill in the following: Show your work on a separate sheet when you change to standard form

3. $y=-3(x+4)^{2}+32$
vertex $(-4,32)$
opens
$y=-3(x+4)^{2}+32$
$y=-3\left(x^{2}+8 x+16\right)+32$
$y=-3 x^{2}-24 x-48+32$
$y=-3 x^{2}-24 z-16$
y-int
-16 $\quad x$-int $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\frac{24 \pm \sqrt{384}}{-6}-7.3-\frac{0.73}{-6}
$$

b. $\quad y=\frac{1}{4}(x-12)^{2}-60$ vertex $(12,-60)$
opens up
$y=\frac{1}{4}(x-12)(x-12)-60$
$y=\frac{1}{4}\left(x^{2}-24 x+144\right)-60$
$y=\frac{1}{4} x^{2}-6 x+36-60$
$y=\frac{1}{4} x^{2}-6 x-24$
$y-\operatorname{int}+$
-24

$$
\begin{aligned}
& \frac{x-i n t}{\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}} \\
& \frac{6 \pm \sqrt{60}}{0.5} \\
& 27.5-3.5
\end{aligned}
$$

4. vertery $(9,3)$
vertex $(14,12)$
(a) $p+(7,-13)$
(b)

$$
\begin{aligned}
y & =a(x-9)^{2}+3 \\
-13 & =a(7-9)^{2}+3 \\
-13 & =a(-2)^{2}+3 \\
-16 & =4 a \\
a & =-4 \\
y & =-4(x-9)^{2}+3
\end{aligned}
$$

$$
\begin{aligned}
& p+(8,660) \\
& y=a(x-14)^{2}+12 \\
& 660=a(8-14)^{2}+12 \\
& 660-12=a(-6)^{2} \\
& 648=36 a \\
& 18=a \\
& y=18(x-14)^{2}+12
\end{aligned}
$$

$$
y=a(x-h)^{2}+k
$$

5. (a) $x^{2}-14 x+45$ ST

$$
(x-9)(x-5)
$$

(c) $x^{2}-144$
$D S$
$(x-12)(x+12)$
Simple trinomial
(b) $3 x^{2}+16 x-12$
$1+1$

$$
D S
$$

$$
\begin{gathered}
3 x^{2}+18 x-2 x-12 \\
3 x(x+6)-2(x+6) \\
(x+6)(3 x+2)
\end{gathered}
$$

(E)

$$
\begin{aligned}
& x^{2}+x-56 \\
& (x+8)(x-7)
\end{aligned}
$$

(d) $8 x^{2}-2 x-3$

$$
\begin{aligned}
& 9 x^{2}-100 \\
& (3 x-10)(3 x+10)
\end{aligned}
$$

hard frinomials (decomposition)
(g)

$$
\begin{gathered}
9 x^{2}-12 x+6 x-8 \\
3 x(3 x-4)+2(3 x-4) \\
(3 x-4)(3 x+2)
\end{gathered}
$$

diff. of squares

$$
\begin{gathered}
8 x^{2}-6 x+4 x-3 \\
2 x(4 x-3)+1(4 x-3) \\
(4 x-3)(2 x+1)
\end{gathered}
$$

(h)

$$
\begin{aligned}
& 12 x^{2}+16 x+5 \\
& 12 x^{2}+10 x+6 x+5 \\
& 2 x(6 x+5)+1(6 x+5) \\
& (6 x+5)(2 x+1)
\end{aligned}
$$

6.(a)

$$
\begin{aligned}
& 8 x(x-5)-7(2-3 x)=3 x+7 \\
& 8 x^{2}-40 x-14+21 x=3 x+7 \\
& 8 x^{2}-22 x-21=0
\end{aligned} \longrightarrow \text { Form } \frac{22 \pm \sqrt{1156}}{16}
$$

6. (b)

$$
\begin{aligned}
& -x^{2}+3 x+2=-3 x^{2}-2 x+4 \\
& 2 x^{2}+5 x-2=0
\end{aligned}
$$

OR Quad Form

$$
\frac{-5 \pm \sqrt{41}}{4}
$$

7. (a)

$$
\begin{aligned}
& h=5 t^{2}-40 t+83.4 \\
& h=5\left(t^{2}-8 t\right)+83.4 \\
& h=5\left(t^{2}-8 t+16-16\right)+83.4 \\
& h=5\left(t^{2}-8 t+16\right)-80+83.4 \\
& h=5(t-4)^{2}+3.4
\end{aligned}
$$

min height $=3.4 \mathrm{~m}$
(c)

$$
\begin{aligned}
& 5=5 t^{2}-40 t+83.4 \\
& 0=5 t^{2}-40 t+78.4
\end{aligned}
$$

(b) When $t=0$

$$
h=5(0)^{2}-40(0)+83.4
$$

8. (a)

$$
\begin{array}{ll}
h=-9.8 t^{2}+58.8 t+67.2 & \text { (b) at } t=3 . \mathrm{sec} \\
h=-9.8\left(t^{2}-6 t\right)+67.2 & \\
h=-9.8\left(t^{2}-6 t+9-9\right)+67.2 & \text { (c) } a t=5 \\
h=-9.8\left(t^{2}-6 t+9\right)+88.2+67.2 & h=-9.8(5)^{2}+58.8(5)+67.2 \\
h=-9.8(t-3)^{2}+155.4 & h=116.2 \mathrm{~m} \\
\max h=155.4 \mathrm{~m} &
\end{array}
$$

9. (a)

$$
\begin{aligned}
& h=-7 t^{2}+7 t+2.25 \\
& h=-7\left(t^{2}-t\right)+2.25 \\
& h=-7\left(t^{2}-t+0.25-0.25\right)+2.25 \\
& h=-7\left(t^{2}-t+0.25\right)+1.75+2.25 . \\
& h=-7(t-0.5)^{2}+4 \\
& \text { max } h=4 m
\end{aligned}
$$

(b) 0.5 sec
(c) 2.25 m
(d) $1=-7 t^{2}+7 t+2.25$

1.15 sec
10.(a) $h=-4.9 t^{2}+29.4 t-7.9$
(d) $25=-4.9 t^{2}+29.4 t-7.9$

$$
h=-4.9\left(t^{2}-6 t\right)-7.9 \quad 0=-4.9 t^{2}+29.4 t-32.9
$$

$$
-4.9\left(t^{2}-6 t+9-9\right)-7.9
$$

$$
-29.4 \pm \sqrt{219.52}
$$

$$
-4.9\left(t^{2}-6 t+9\right)+44.1-7.9
$$

$$
h=-4.9(t-3)^{2}+36.2
$$

$$
36.2 \mathrm{~m}
$$

(b) 3 sec
(c) $h=-4.9(5)^{2}+29.4(5)-7.9$ $=16.6$
(e) when is $h=0$

$$
\begin{aligned}
& 0=\frac{-4.9 t^{2}+29.4 t-7.9}{\frac{-29.4 \pm \sqrt{709.52}}{-9.8}} \\
& 0.28 \underbrace{5.5 e c}_{5.72}
\end{aligned}
$$

Trigonometry

$$
\begin{aligned}
& \frac{P}{\sin 42^{\circ}}=\frac{15}{\sin 74^{\circ}} \\
& P=10.4 \\
& \frac{R R=64^{\circ}}{r} \\
& \frac{R}{\sin 64^{\circ}}=\frac{15 \mathrm{~cm}}{\sin 74^{\circ}} \\
& r=14.03
\end{aligned}
$$

3.

$$
y=6.7 \quad x=5.6
$$

$$
\begin{gathered}
\frac{y}{\sin 46^{\circ}}=\frac{8}{\sin 50} \\
y=6.7
\end{gathered}
$$

2.

$\sin 64^{\circ}=\frac{x}{9}$ OR $\frac{x}{\sin 640^{\circ}}=\frac{9}{\sin 90^{\circ}}$

$$
x=8.1 \mathrm{~m}
$$

5. (a) A side and angle opposite.
5.b)SAS OR SSS
(c) Law of Sines: Given 2 sides and an angle
 when $a<b$
6.

$$
b^{2}=5.8^{2}+7.4^{2}-2(5.8)(7.4) \cos 47^{\circ}
$$

$$
b^{2}=29.857
$$

$$
b=5.46 \mathrm{~km}
$$

8.

$$
\begin{aligned}
\cos \theta & =-0.25 \\
\theta & =104.5^{\circ}
\end{aligned}
$$

$$
\sin E=\frac{198 \sin 98}{320} \quad \frac{x}{\sin 44.2^{\circ}}=\frac{320}{\sin 98}
$$

$$
\sin E=0.6127 \quad x=225.3 \mathrm{~km}
$$

$$
E=37.8^{\circ}
$$

11. Determine the measure of the obtuse angle at A in triangle PAL

$$
\frac{\sin A}{11.1}=\frac{\sin 36^{\circ}}{7.2}
$$

$$
\sin A=\frac{11.11 \sin 36^{6}}{7.2}
$$

$$
\sin A=0.9062
$$

$$
A=\sin ^{-1} 0.9062
$$

$$
A=65^{\circ} \text { other }<180-6585^{1155^{\circ}}
$$

12.

$148.3 m-67.5 m=80.8 m$

Unit Four: Geometry

1. Determine the measure of all unknown angles

!. Detemine $\angle D C E$ and $\angle C A B$?

2. Determine the correct measures of the interior angles of $\triangle C D E$

L a. Determine the sum of the measures of the interior angles of this polygon.

- b. Are each angle the same measure

$$
\begin{aligned}
& \text { (a) } 180(8-2)=1080^{\circ} \\
& \text { (b) } N 0, \text { sides are not equal }
\end{aligned}
$$

5. Each interior angle of a regular convex polygon measures 144°. How many sides does the polygon have?

$$
\begin{array}{r}
\frac{180(n-2)}{n}=144 \quad 10 \text { sides } \\
180(n-2)=144 n \\
180 n-360=144 n \\
180 n-144 n=360 \\
36 n=360 \\
n=10
\end{array}
$$

besides $180(6-2)=720$
$\frac{720}{6}=120^{\circ}$
8 sides $180(8-2)$

$$
=1080 \quad \frac{1080}{8}=135
$$

7 . Determine the measure of $\angle B D E$.
8 . Determine the values of a, b, and c.

9. Determine the value of x.
$3 x+10+4 x-28+2 x+30=180$

11. Determine the sum of the measures of the angles in a 13 -sided convex polygon. Show your calculation. $180(13-2)$

$$
=1980^{\circ}
$$

12.

Prove: $F G \| H I$

13. Given $A B \| C D$

$$
\angle 1=\angle 4
$$

Prove: $\angle 1=\angle 2$

Statement	reason	
$A B \\| C D$	given	
$\angle 1=\angle 4$	given	
$\angle 4=\angle 2$	Corresp <15.	
$\angle 1=\angle 2$	transitue	

14. Given $B C$ II $E F$

$$
\angle 1=\angle 3
$$

Statement	reason	
$B C \\| E F$	given	
$\angle 1=\angle 3$	gwen	
$\angle 2=\angle 3$	corresp. $\angle 15$	
$\angle 1=\angle 2$	transitive	
$A B \\| D E$	equal corr. $\angle 15$	

15. Given $\angle==115^{\circ}$.

Determine the measures of y.

$$
\begin{aligned}
& a=65^{\circ} \\
& n=50^{\circ} \\
& m=40^{\circ} \\
& b=70^{\circ} \\
& x=45^{\circ} \\
& y=110^{\circ}
\end{aligned}
$$

16.

$$
\begin{aligned}
& \angle a=120^{\circ} \\
& \angle b^{\circ}=30^{\circ} \\
& \angle c=30^{\circ}
\end{aligned}
$$

Unit 5: Financial

1. Patrick purchased a $\$ 15000$ GIC for 12 years with a simple interest rate of 3.7%. What is his GIC worth in 12 years?
2. Wendy sold her acre of land by the river for $\$ 35000$, she plans to invest the money for 20 years. Her options are:
Option A: 20 -year bond at 4.5%, compounded semi-annually

- Option B: 10 -year GIC at 3.1%, compounded semi-annually; reinvest funds in a 10 -year GIC at 5.1%, compounded quarterly.
b. Determine the rate of return (round to the nearest tenth of a percent) for each investment

b) $R O R=\frac{\text { interest earned }}{\text { amt invested }}$

$$
\text { monthly if they wished to have } 430000 \text { for your } 18^{\text {th }} \text { birthday for school }
$$

b. Approximately how long would it take for a sum of money to double if it is invested at 9.5%

$=\frac{430000}{\left(1+\frac{0.073}{12}\right)^{12(18)}}$
$=\$ 116021.38$
4. Sylvia opened this portfolio when she turned 25
Monthly deposits of $\$ 275$ into an account averaging 5.8%, compounded daily

- Monthly deposits of $\$ 275$ into an account averaging
A $\$ 10000$ bond earning 8.3%, compounded monthly
(b) $\underset{\text { Doubling }}{\text { Period }}=\frac{12}{9.5}$

Ruler 12

+ \$265906.77
\$119583.31
$\$ 385490.08$

5. Barney Rubble regularly deposits $\$ 430$ per month into a Registered Retirement Savings Plan (RRSP) for his retirement. How much money will he have when he retires in 23 years, knowing that the interest rate is 5.1% compounded semi-annually?

TI-84 Plus
th Texas Instruments

```
M=276
I%=5,1
F
PHT= -4.30
FV=223.56.3323
FY=12
[
FHT:國國 BEGIN
```

$\$ 223356.33$
6. Cynthia wants to purchase a used car 12300 plus HST of

$$
\text { 6) } 12300+\frac{H 5 T}{1599}=13899 \text { an of } 5 . \varepsilon
$$

49 payments

7. The Wilson are buying a house that costs $\$ 260000$. They will finance the purchase with a 25 year mortgage with an interest rate of 3.75%, compounded semi-annually. They must make a down payment of $\$ 75000$.
a) How much will each payment 18 ?
b) How much interest will Debbie e
c) How much url shelpay altogether

(b) $948.23 \times 12 \times 25=284469$ is what she paid, She mortgaged ${ }^{18} 185000$
8. option A

payment $\$ 746.81$ quarterly for 9 years
$\$ 746.81 \times 4 \times 9=\$ 26885.16$

option B

TI-84 Plus
地 Texas Instruments

payment $\$ 248.39$ monthly for 9 years
$\$ 248.39 \times 12 \times 9=\$ 26933.04$
cheaper
9.

TI-84 Plus解 Texas Instruments

7 payments
7 months
a. $7 \times \$ 434.30=\$ 3040.10$
b. $\$ 40.10$ interest

