

Oct. ____, 2019

1) Find the missing number (Show your work)

$$14^{14} = 38416$$

$$14^{12} = 194$$

$$14^{12} = 194$$

$$14^{12} = 194$$

$$14^{12} = 2744$$

$$14^{12} = 38416$$
2) Find the missing number
$$16^{16} = 15625$$

$$3^{16} = 64$$

$$3^{16} = 129$$

$$4^{16} = 196$$

$$5^{16} = 15625$$

$$4^{16} = 196$$

3) Place a <,> or = in the blank between (Can use a calculator BUT show your work.)

a)
$$5^7$$
 2^8 48 b) 3^3 2^5 25 25

Base is 7

exponent is 3

$$7^4 = 7 \times 7 \times 7 \times 7$$

expanded form

Quiz Time

Homework

∞ **Solutions**

1. Identify the base of each power.

a) 6^3 **b)** 2^7 **2 c)** $(-5)^4$ **-5 d)** 7^0 **7**

2. Use repeated multiplication to show why 35 is not the same as 53.

 $3^5 = 3 \times 3 \times 3 \times 3 \times 3$

 $5^3 = 5 \times 5 \times 5$

= 243

= 125

Complete this table.

Power	Base	Exponent	Repeated Multiplication	Standard Form
4 ⁴	7	ч	4 ×4×4×4	256
10 ³	0	3	ox ox10	1000
143	14	2	14 × 14	194
15		5	$1 \times 1 \times 1 \times 1 \times 1$	
9,	9	6	42529252676	531 441
5	5)	1314944444 5x5x5x5x5x5x5	78 125

Write each product as a <u>power</u>, <u>then</u> <u>evaluate</u> (standard form).

b) 3 × 3 × 3 × 3 × 3 × 3=3 -11

- 5. Find the missing exponent. (Show_work)

a) $7\sqrt{3} = 16\ 807$ b) $2\sqrt{3} = 32$ c) $2\sqrt{7} = 128$ d) $3\sqrt{9} = 81$ e) $9\sqrt{9} = 81$

c) $2 \times 2 = 4$

a) 7x7 = 49

7x 7x 7 = 343

b) $2 \times 2 = 4$

 $2 \times 2 \times 2 = 8$

7x7x7x7 = 2401

 $2 \times 2 \times 2 = 8$

 $2 \times 2 \times 2 \times 2 = 16$

7x7x7x7x7 = 16807

2 x2 x2 x2 = 16

2 x 2 x 2 x 2 x 2 = 32

2 x 2 x 2 x 2 x 2 = 32 2 x 2 x 2 x 2 x 2 = 64 $2 \times 2 = 121$

d) $3 \times 3 = 9$

e)9x9=81

 $3 \times 3 \times 3 = 27$

3x3x3 = 81

6. Find the missing base.

a) $4^{3} = 64$ b) $7^{2} = 49$ c) $1^{5} = 1$ d) $4^{3} = 729$

7. Evaluate each of the following. What do you notice?

a) 10^2

b) 10³

1000

c) 10⁵

100 000

d) 10⁶

1 000 000

The exponent on the 10 is the number of zeros that appear in standard form

8. Place a <, > or = in the box. (Show your calculations)

128 216

a) $2^7 \ 6^3$ b) $4^3 = 2^6$ c) $9^3 \ 3^5$ d) $7^3 \ 6^5$

64 64 729 243 343 7776

What do we notice?

 $99^1 = 99$

$3^1 = 3$	$10^{0} =$
10 ¹ = \O	20 = 1
12 ¹ = 2	81° = 1
17 ¹ =]	210 =
271 - 27	120 - 1

3
$$5^{\circ} = 1$$
 $5^{\circ} = 5$
 $5^{\circ} = 25$
 $5^{\circ} = 25$
 $5^{\circ} = 125$
 $5^{\circ} = 125$
 $5^{\circ} = 125$
 $5^{\circ} = 125$
 $5^{\circ} = 125$

Exponents

Whenever you have an exponent of 2, it is said to be squared. 3^2 might be read as 3 squared.

Whenever you have an exponent of 3, it is said to be cubed. 5^3 might be read as 5 cubed.

If the base is raised to the exponent 1, then the answer will always be the base itself.

examples: $15^1 = 15$

 $24^1 = 24$ $6893^1 = 6893$

If the <u>base is raised to the exponent 0</u>, then the <u>answer will always be 1</u>. examples: $26^0 = 1$ $147^0 = 1$ $945^0 = 1$

Squares and Perfect Squares

Ex. 1)

What is the area of each below? Are they squares? Why or why not?

Ex 2) Can you form squares with the following areas? (Factors)

You will form a square if 2 of the factors are the same, for example an area of 25 cm^2 forms a square because $25 = 5 \times 5$

Squares and Perfect Squares

- Ex 2) Can you form squares with the following areas?
 - (a) 18 cm^2
- (b) 25 cm^2
- (c) 100 cm^2 (d) 60 cm^2
- a) No, there is no number you can multiply by itself to get 18
 - b) Yes, forms a square, 5 x 5=25
 - C) Yes because 10 x 10 = 100
 - d) No, can not form a square, there is no number you multiply by itself to get 60

How do you know if a given area will make a square?

You will form a square if 2 of the factors are the same, for example an area of 25 cm^2 forms a square because $25 = 5 \times 5$

Notes

"To Square a number" - Multiplying a number by itself

Example: "The square of 5" is $5 \times 5 = 25$

Thus

$$5^2 = 25$$

$$5^2 = 5x5 = 25$$

25 is a square number or Perfect Square

WS 2.3 Powers (Sept. 6 Homework).pdf

WS 2.3 Powers Soultions pdf.pdf