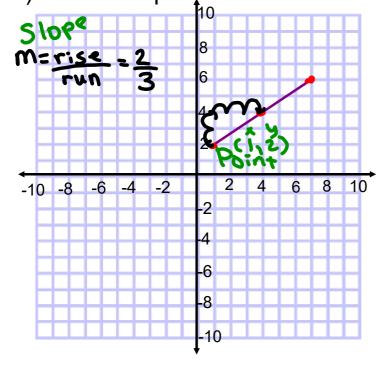


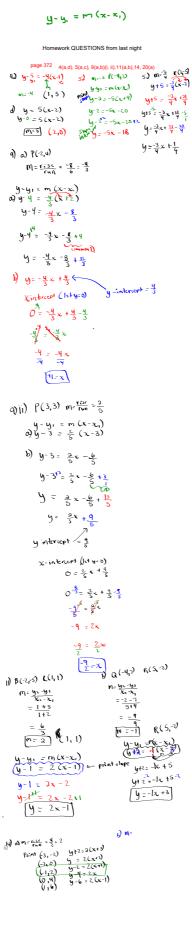
1)Write an equation when given m = -5 and a point (-7, 5)

$$y-y_i=m(x-x_i)$$


$$y - 5 = -5(x - 7)$$

$$y = -5x - 30$$

$$y = -5x - 30$$
 Slope - intercept


2)Write an equation of a line that passes through (-7, 4) and (-5, 10) and has a second and (-5, 10) and has a y intercept of -5

3)Write an equation for the line:

$$y=3x-5$$

$$\gamma - 2 = \frac{2}{3}(x-1)$$

9. a) For each line, write an equation in slope-point form.

iii)
$$y = h(x)$$

 $-4 -2 0 2 4$
 $P(-4, -2) -2$

$$y - y_1 = m (x - x_1)$$

$$y + 2 = \frac{1}{3}(x + 4)$$

b) Write each equation in part a in slope-intercept form, then determine the x- and y-intercepts of each graph.

$$y + 2 = \frac{1}{3}(x + 4)$$

$$y + 2 = \frac{1}{3}x + \frac{4}{3}$$

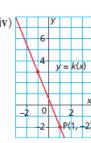
$$y = \frac{1}{3}x + \frac{4}{3} - 2$$

$$y = \frac{1}{3} x + \frac{4}{3} - \frac{6}{3}$$

$$y = \frac{1}{3}x - \frac{2}{3}$$

x intercept

$$0 = \frac{1}{3} x - \frac{2}{3}$$


$$\frac{2}{3} = \frac{1}{3} \times$$

$$6 = 3x$$

$$x = 2$$

<u>y intercept</u>

<u>-2</u> 3

$$y - y_1 = \stackrel{\downarrow}{m} (x - x_1)$$

$$y + 2 = \frac{5}{2}(x - 1)$$

b) Write each equation in part a in slope-intercept form, then determine the κ- and y-intercepts of each graph.

$$y + 2 = \frac{5}{2}(x - 1)$$

$$y + 2 = -\frac{5}{2}x + \frac{5}{2}$$

$$y = -\frac{5}{2}x + \frac{5}{2} - 2$$

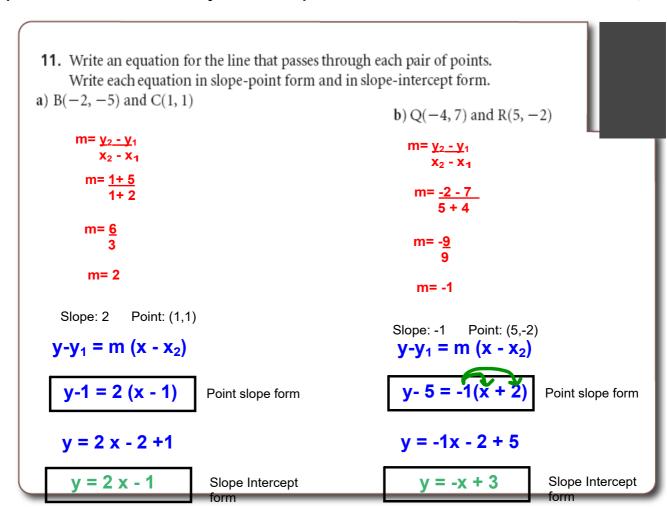
$$y = -\frac{5}{2}x + \frac{5}{2} - \frac{4}{2}$$

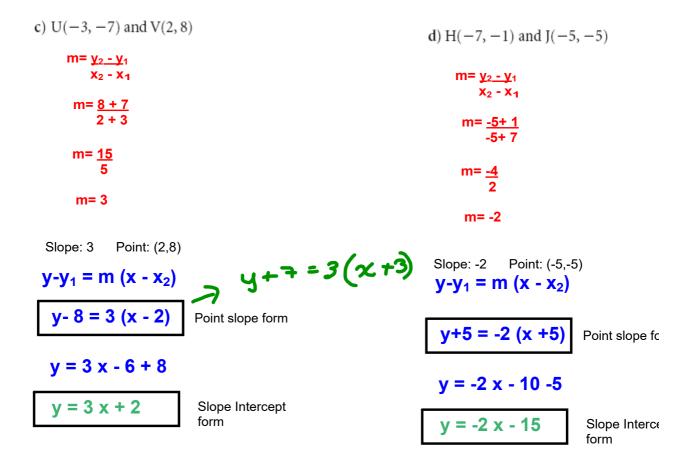
$$y = -\frac{5}{2}x + \frac{1}{2}$$

x intercept

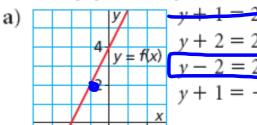
$$0 = \frac{-5}{2} x + \frac{1}{2}$$

$$-\frac{1}{2} = \frac{-5}{2} \times$$

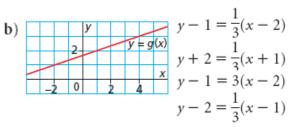

$$-2 = -10x$$

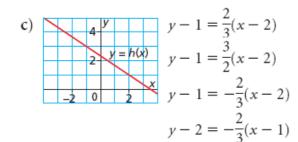

$$x = \frac{2}{10}$$

$$x = \frac{1}{5}$$


<u>y intercept</u>

- <u>5</u> 2





$$y - 1 = \frac{1}{3}(x - 2)$$

$$y - 1 = 3(x - 2)$$

$$y - 2 = \frac{1}{3}(x - 1)$$

6.5 Slope-Point Form of the Equation for a Linear Function

20. a) Write an equation for the line that passes brough D(-5, -3) and is:

i) parallel to the line
$$y = -\frac{4}{3}x + 1$$

Point :
$$(-5,-3)$$
 m = $-\frac{4}{3}$

$$y-y_1 = m (x - x_1)$$

$$y-(-3) = -\frac{4}{3}(x-(-5))$$

Point slope form

$$y + 3 = -\frac{4}{3}(x + 5)$$

ii) perpendicular to the line $y = -\frac{4}{3}x + 1$

Point : (-5,-3)
$$m = \frac{3}{4}$$

$$y-y_1 = m (x - x_1)$$

$$y-(-3)=\frac{3}{4}(x-(-5))$$

Point slope form

$$y + 3 = \frac{3}{4}(x + 5)$$

b) Compare the equations in part a. How are they alike? How are they different?

The both have the same point but opposite reciprocal slopes

$$3y + 9 = -4(x + 5)$$

$$3y = -4(x+5)-9$$

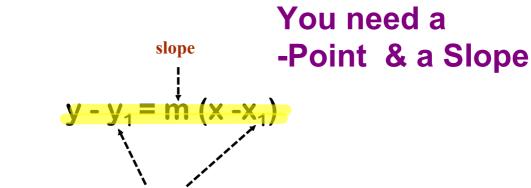
$$3y = -4x - 20 - 9$$

$$3y = -4x - 29$$

slope intercept form
$$y = -\frac{4}{2}x - \frac{29}{3}$$

$$4y + 12 = 3(x + 5)$$

$$4y = 3(x + 5) - 12$$


$$4y = 3x + 15 - 12$$

$$4y = 3x + 3$$

slope intercept form $y = \frac{3}{4}x + \frac{3}{4}$

Point - Slope Form

You can also find the equation of a line if you are given a point and the slope of the line. In order to do this you use the formula:

The x and y values from the given point

This equation can be rearranged to y=mx+b

(slope intercept)

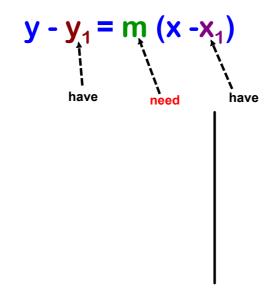
Example 1:

Find the equation of a line that passes through the points (-4,3) and a has a slope perpendicular to y=2x-7

Write what you know:

What do we need:

$$y - y_1 = m (x - x_1)$$


have need have

Example 2:

Find the equation of a line that passes through the points (0,5) and (-2,1)

Write what you know:

What do we need:

See next page "if you use other point)

What if you use the other point????

Example 2:

Find the equation of a line that passes through the points (0,5) and (-2,1)

Write what you know:

Fill in what you know:

$$(0.5)$$
 m= ?

$$y - y_1 = m (x - x_1)$$

$$y = 2 x + 5$$

We need slope:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = (1 - 5)$$

 $((-2) - 0)$

$$m = (-4)$$
 (-2)

$$m=2$$

Fill in what you know:

$$y - y_1 = m (x - x_1)$$

$$y - 1 = 2 (x - (-2))$$

$$y - 1 = 2x + 4$$

$$y - 1 + 1 = 2 x + 4 + 1$$

$$y = 2 x + 5$$

Example 3: X, y, X, y Yz
Find the equation of a line that passes through the points (8,-3) and (6,1), and has a y intercept of (0,-7)

$$m=-2$$

$$b=-7$$

$$V = mx + b$$

$$V = -2x - 7$$

$$M = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{1 - -3}{6 - 8}$$

$$= \frac{1 + 3}{6 - 8} = \frac{4}{-2} = -2$$

$$y-7=\frac{2}{5}(x+3)$$

$$5 \cdot [y-7] = \frac{2}{5} (x+3)$$

 $5(y-7) = 2(x+3)$

Distribute through bracket

5y - 35 = 2x + 6

$$5y - 35^{3} = 2x + 6 + 35$$

$$5y = 2x + 41$$

$$5y = 2x + 41$$

$$5y = 2x + 41$$

Let y = 0 for the x-intercept

$$4x - 5y = 40$$

$$4x - 5(6) = 40$$

$$\frac{4x}{4} = \frac{40}{4}$$

Let x = 0 for the y-intercept.

$$4x - 5y = 40$$

Example 3: Find the equation of a line that passes through the points (-3,-3) and has a slope of $\frac{3}{4}$.

Write what you know:

$$y - y_1 = m (x - x_1)$$

Write an equation of a line (in slope -intercept form) given the following 1= WX+P information,

x-intercept = 2, slope = 3/2

1) x-intercept = 2, slope = 3/2
Point
(2,0)
$$M = \frac{3}{2}$$

 $y - y_1 = m(x - x_1)$
 $y - 0 = \frac{3}{2}(x - 2)$
 $y = \frac{3}{2}x - \frac{6}{2}x$
 $y = \frac{3}{2}x - \frac{6}{2}x$

points (3, 1) & (-2, 3) lie on the line. x, y, 2, y,

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\frac{3 - 1}{-2a - 3} = \frac{2}{-5} m$$

$$point (3, 1)$$

$$1 - y_1 = m(x - x_1)$$

$$5 \times [y - 1] = \frac{-2}{5} (x - 3) = \frac{2}{5} (x - 3)$$

$$5 y - 5 = -2x + 6$$

$$7x[y-4] = \frac{3}{1}(x+9)x^{2}$$

$$7(y-4) = 3(x+9)$$

$$7y-28^{28} = 3x + 27 + 28$$

$$7y = \frac{3x+55}{7}$$

$$y = \frac{3}{7}x + \frac{55}{7}$$

Point slope form.docx