

Warm Up Grade 8
Nov. 28, 2019

Is the quadrilateral a rectangle?

ngie?

have 90° corners

Since No Right

A then not

Rectangle.

Homework Solutions pg. 43 # 9,10,12(a,c), 14

9. 6.7. TIS

The state of the s

. , , , , , ,				·
JO. IS the	ework Solutions p	pg. 43 # 9,10,12 F	Puthan.	triples,
it will	form o	righ	t'D.	• •
3,5,7	72	2 ~ 3	² +5 ²	
	49	2 3	1 +25	
-1 . 11	•		34	
It will form a r	hot to	rianale		
torm or i	ight -	1001.9		
11				
Pythagorean Triples	Legs	Hypotenuse		
3,4,5	3,4	5		<u>—</u>

Pythagorean Triples	Legs	Hypotenuse	
3,4,5	3,4	5	
6,8,10	6,8	10	
12, 16,20	12,16	20	
15, 20,25	15,20	25	
21, 28, 35	21,28	35	

b) Take the original triple, and multiply each by the same number

more 10,24,26 more 10,24,26 15,36,39 20,48,52 25,60,65

 65^2 $25^2 + 60^2$ 625 + 3600 4225

Page 48-49 #2, #3, #4a, #5a Homework Solutions

2) Must label the longest side (opposite to 90°), the hypotenuse, c.

The other two sides does not matter which is a or b.

3) When given legs and asked to find longest side, c then add. When given c and a leg, then subtract

Page 48-49 #2, #3, #4a, #5a Homework Solutions

$$c^{2} = \alpha^{2} + 32^{2}$$

$$30^{2} = \alpha^{2} + 324$$

$$900 = \alpha^{2} + 324 - 324$$

$$900 - 324 = \alpha^{2} + 324 - 324$$

$$576 = \alpha^{2}$$

$$24 = \alpha$$

$$c^{2} = a^{2} + b^{2}$$

$$17^{2} = a^{2} + 8^{4}$$

$$289 = a^{2} + 64$$

$$289 - 64 = a^{2} + 64 - 64$$

$$215 = a^{2}$$

$$125 = a^{2}$$

$$c^{2} = a^{2} + b^{2}$$

$$9^{2} = a^{2} + 7^{2}$$

$$81 = a^{2} + 49$$

$$81 - 49 = a^{2} + 49 - 49$$

$$32 = a^{2}$$

$$5.7 = a^{2}$$

Applying the Pythagorean Theorem

Now that we know how to use the Pythagorean Theorem, we will apply it to "real life" situations.

A doorway is 2.0 m high and 1.0 m wide. A square piece of plywood has side length 2.2 m. Can the plywood fit through the door?

Always start with a diagram and fill in what you know.

Ask yourself, What shape is the doorway? What is the longest part of $C_3 = \alpha_5 + \beta_5$

the doorway?

The longest part is the To find the length of the use Pythagorean Theorem.

$$c^{2} = a^{2} + b^{2}$$
 $c^{2} = 2^{2} + 1^{2}$
 $c^{2} = 4 + 1$
 $c^{2} = 5$
 $c = \sqrt{5}$ or 2.2 m

A piece of plywood <u>u</u>m long could fit through the door.

2) A ramp is used to load a snow machine onto a trailer. The ramp as a horizontal length of 168 cm and sloping length of 175 cm. The side view is a right triangle. How high is the ramp?

Remember start by drawing a diagram and filling in what you know.

The ramp is **t**cm high.

Marina helped her dad build a small rectangular table for her bedroom. The tabletop has a length of 56 cm and a width of 33 cm. The diagonal of the tabletop measures 60 cm. Does the tabletop have square corners? How do you know?

$$(60)^{2}$$
, $56^{2} + 33^{2}$
 3600 $3136 + 1089$
 4225
Not $3.364 \triangle$
So table is not a Rectangle

Test Dec. 3

Page 49-50

#6, #7, #8(b), #9, #10, #11, #13, #16

Tomorrow's warm-up
is very Similar
to the test.

