Similar to test Question

A company sells pencils.

Is the following a linear or non-linear relation? Prove

Can you connect the dots if you were to draw this on graph paper?

Au = $\frac{1}{2}$ = 0.5

A company does Not $\frac{3.50}{5}$ = 0.5

Sell half a pencil $\frac{5}{10}$ = 0.5

So Cannot connect dots (Discret)

of Pencil Cost

(\$)

10.00

11.00

17.00

2.50

2.50

2.50

2.50

Change are

D
$$\{x_1 - \leq x \leq -, x \in -\}$$

R $\{y_1 - \leq y \leq -, y \in -\}$

² How do you write the co-ordinates?

$$x$$
-intercept = -8

Y = 0 for the x-intercept.

y-intercept =
$$\frac{6}{(0,6)}$$

X = 0 for the y-intercept.

2. Sketch a graph of the linear function f(x) = 4x - 3.

$$x - intercept$$

$$(let y=0)$$

$$0^{2} = 4x - 3^{2}$$

$$3 = 4x$$

$$\frac{3}{4} = 4x$$

$$\frac{3}{4} = x$$

1)
$$y = 5x + 10$$

 $m = 5$ $b = 10$

$$y = mx + b$$

2) $P = -2t - 3$
 $m=-2$ $b=-3$

3)
$$R = -\frac{5}{9}g + 7$$

 2
 $m = -\frac{5}{2}b = +7$

4)
$$y = 8 + \frac{1}{2}x$$

 $m = \frac{1}{2}$ $b = 8$

y intercept = -4

Slope = -1/2

$$-\frac{1}{2} = \frac{1}{-2} = -\frac{1}{2}$$

- 6. a) Create a table of values when necessary, then graph each relation.
 - i) y = 2x + 8
- ii) y = 0.5x + 12
- iii) $y = x^2 + 8$
- iv) y = 2x
- v) x = 7
- **vi**) x + y = 6
- b) Which equations in part a represent linear relations? How do you know?
- a) Tables of values may vary. For example:

i) Linear							
	x	У	12 9				
	-2	4	8xy = 2x + 8				
	-1	6	1 2 7 7 8				
	0	8	4-				
	1	10	_2 0 2				
	2	12					

8

2

4

- 7. For each relation below:
 - i) Identify the dependent and independent variables.
 - ii) Use the table of values to determine whether the relation is linear.
 - iii) If the relation is linear, determine its rate of change.
 - a) The distance required for a car to come to a complete stop after its brakes are applied is the *braking distance*. The braking distance, *d* metres, is related to the speed of the car, *s* kilometres per hour, when the brakes are first applied.

b) The altitude of a plane, a metres, is related to the time, t minutes that has elapsed since it started its descent.

Independent Dependent

	s (km/h)	$d(\mathbf{m})$	
10	C^{50}	¹³)	7
10	60	202	7
	C.70	27	8
10	80	35 V	O

Non Linear

- **8.** In a hot-air balloon, a chart shows how the distance to the horizon, *d* kilometres, is related to the height of the balloon, *h* metres.
 - a) Graph these data.
 - b) Is the relation linear? What strategy did you use?

h(m)	d(km)		
5	8		
10	11		
30	20		
50	25		
100	36		

11. A skydiver jumps from an altitude of 3600 m For the first 12 s, her height in metres above the ground is described by this set of ordered pairs: {(0, 3600), (4, 3526), (8, 3353.5), (12, 3147.5)} For the next 21 s, her height above the ground is described by this set of ordered pairs: {(15, 2988.5), (21, 2670.5), (27, 2352.5), (33, 2034.5)} Determine whether either set of ordered pairs represents a linear relation. Explain.

- **12.** The cost, C dollars, to rent a hall for a banquet is given by the equation C = 550 + 15n, where n represents the number of people attending the banquet.
 - a) Explain why the equation represents a linear relation.

The equation is a linear equation because the cost of the hall is \$ 550 just to rent the hall and you must add \$15 for each person that attends the banquet

Dependent Variable: Is the cost of the hall since you need to know the number of people who attend before you can pay for the hall

Independent: Number of people

b) State the rate of change. What does it represent?

13. A safety flare is shot upward from the top of a cliff 200 m above sea level. An equation for the height of the flare, *d* metres, above sea level *t* seconds after the flare is fired, is given by the equation *d* = −4.9*t*² + 153.2*t* + 200. Describe two strategies you could use to determine whether this relation is linear.

■ The seconds after the flare is fired, is given by the equation *d* = −4.9*t*² + 153.2*t* + 200. Describe two strategies you could use to determine whether this relation is linear.

- **14.** This graph represents Jerome's long distance phone call to his pen pal in Nunavut. Jerome is charged a constant rate.
 - a) Identify the dependent and independent variables.

Independent Variable: Time (min)

Dependent Variable: Cost (\$)

b) Determine the rate of change, then describe what it represents.

5.6 Properties of Linear Relations

\$0.08/ min

15. Kashala takes a cross-country trip from her home in Lethbridge through the United States. In Illinois, she drives on a toll highway. This graph represents the cost of Kashala's drive on the toll highway. She is charged a constant amount at each toll booth and she starts with US\$10 in change. Determine the rate of change, then describe what it represents.

= - \$0.8 / booth

Kashala's Drive on the Toll Highway

