

7

A wheelchair ramp should not exceed a slope of 0.125.

Building stairs should not exceed a slope of 0.83

Some roofs are steeper than others. Steeper roofs are more expensive to shingle.

The steepness of a roof is measured by calculating its slope.

$$Slope = \frac{rise}{run}$$

The rise is the vertical distance from the bottom of the edge of the roof to the top.

The **run** is the corresponding horizontal distance.

For each roof, we count units to determine the rise and the run.

Roof A

$$Slope = \frac{rise}{run}$$

Slope
$$=$$
?

6.1 Slope of a Line

Ex)
$$y = -3x + 4$$

 $m = -3$ Slope

y-intercept =
$$+4$$
 Point

Sketch using these two pieces of information

Stepl) Place the y-inkrept on the graph (blue) (0,4)

Step2 Use M=-3 to get new points.

$$\frac{1}{M} = \frac{-3}{-3} \quad \text{or} \quad \frac{3}{3} \quad \frac{\text{rise}}{\text{run}}$$

$$\frac{1}{M} = \frac{-1}{3} \quad \text{or} \quad \frac{-1}{3} \quad \frac{\text{run}}{\text{run}}$$

$$\frac{1}{M} = \frac{-3}{3} \quad \text{or} \quad \frac{3}{3} \quad \frac{\text{rise}}{\text{run}}$$

The slope of a line segment on a coordinate grid is the measure of its rate of change. From Chapter 5, recall that:

Rate of change =
$$\frac{\text{change in dependent variable}}{\text{change in independent variable}}$$

Rate of change =
$$\frac{\text{change in } y}{\text{change in } x}$$

The change in y is ? $\triangle y$ The change in x is ? $\triangle x$

So, slope =
$$\frac{\text{rise}}{\text{run}}$$
 = $\frac{\Delta y}{\Delta x}$

$$M = \frac{\text{rise}}{\text{run}} + \frac{+5}{+6} = \frac{5}{6}$$

6.1 Slope of a Line

Find the slope of a line passing through the points (2,-3) and (-5,8).

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

This is used when you are given co-ordinates.

$$M = (y_2) - (y_1)$$

$$= (x_2) - (x_1)$$

$$= 8 - 3$$

$$-5 - 2$$

$$= 8 + 3$$

$$-5 - 2$$

YOU TRY

Find the slope of a line passing through the points (7,5) and (8,-2).

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$M = \frac{-2-5}{8-7} = \frac{-7}{1}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

15

Calculate the slope.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$2. (-9,-2) (7,3)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Draw a line segment with each given slope.

- 2. Draw a line segment with each slope.
 - a) $\frac{4}{9}$
- **b**) $-\frac{8}{3}$

Determine the slope of each of the following lines:

Which ordered pairs should we use to make our calculation?

$$slope = \frac{\Delta y}{\Delta x}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$slope = \frac{\Delta y}{\Delta x}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$