

Pg 218 4,7a, 8a, 9, 10, 11

homework solutions

$$4a) \sqrt{8} = \sqrt{4(2)}$$

$$= \sqrt{4} \sqrt{2}$$

$$= \sqrt{4} \sqrt{2}$$

$$= 2\sqrt{2}$$

4b)
$$\sqrt{12} = \sqrt{4}(3)$$

= $\sqrt{4} \sqrt{3}$
= $2\sqrt{3}$

4c)
$$\sqrt{32} = \sqrt{(16)(2)}$$

= $\sqrt{16}\sqrt{2}$
= $4\sqrt{2}$

4 d)
$$\sqrt{50} = \sqrt{(25)(2)}$$

= $\sqrt{25}\sqrt{2}$
= $5\sqrt{2}$

$$4f)$$
 $\sqrt{27} = \sqrt{9}(3)$ $= \sqrt{9}\sqrt{3}$ $= 3\sqrt{3}$

$$49) \sqrt{48} = \sqrt{(16)(3)}$$

$$= \sqrt{16} \sqrt{3}$$

$$= 4\sqrt{3}$$

4h)
$$\sqrt{75} = \sqrt{(25)(3)}$$

= $\sqrt{25}\sqrt{3}$
= $5\sqrt{3}$

7. a) Use the diagram to explain why $\sqrt{45} = 3\sqrt{5}$.

$$C = \sqrt{a^2 + b^2}$$

$$=\sqrt{6^2+3^2}$$

$$=\sqrt{36+9}$$

b) Use algebra to verify that $\sqrt{45} = 3\sqrt{5}$. $C = \sqrt{45}$

√45 = =

homework solutions

9) Rewriting J50 as J25 · Ja helps you simplify J50 Since you can take the square root of the perfect square 25. You cannot take the square root of either 10 or 5 so rewriting 150 as 10.15 does not help. You need one number to be a perfect square number.

$$10a)$$
 $\sqrt{90} = \sqrt{(9)(10)}$
= $\sqrt{9} \cdot \sqrt{10}$

$$10c$$
) $\sqrt{108} = \sqrt{(36)(3)}$ $10d$) $\sqrt{600} = \sqrt{(100) \cdot (6)}$ $= \sqrt{36 \cdot \sqrt{3}}$ $= 10 \sqrt{6}$

homework solutions

$$| a | = \sqrt[3]{8} \cdot \sqrt[3]{2}$$

$$= \sqrt[3]{8} \cdot \sqrt[3]{2}$$

$$= \sqrt[3]{2} \cdot \sqrt[3]{3}$$

$$= \sqrt[3]{2} \cdot \sqrt[3]{3}$$

$$= \sqrt[3]{2} \cdot \sqrt[3]{3}$$

$$= \sqrt[3]{2} \cdot \sqrt[3]{3}$$

$$\begin{array}{c} 11 \text{ b)} & 381 = 3(27)(3) \\ = 327 \cdot 33 \\ = 33/3 \end{array}$$

11d)
$$\sqrt[3]{128} = \sqrt[3]{(64) \cdot (2)}$$

= $\sqrt[3]{64} \cdot \sqrt[3]{2}$
= $\sqrt[4]{3}$

homework solutions

$$[9] \sqrt[3]{135} = \sqrt[3]{(27)(5)}$$

$$= \sqrt[3]{(27)} \cdot \sqrt[3]{(5)}$$

$$= \sqrt[3]{5}$$

$$||j\rangle \sqrt[3]{375} = \sqrt[3]{(125)(3)}$$

$$= \sqrt[3]{125} \cdot \sqrt[3]{3}$$

$$= 5\sqrt[3]{3}$$

Use either prime factorization or product of nth factors

- Write each radical in simplest form, if possible.
 - a) √30
 - b) ³√32
 - c) ⁴√48

Mixed toEntire

Express as a reduced mixed radical.

 $5\sqrt{18}$

Express as an entire radical.

$$3\sqrt{5}$$

$$= \sqrt{3^2 \times 5}$$

$$= \sqrt{9 \times 5}$$

$$= \sqrt{45}$$

Express as an entire radical.

$$2\sqrt[4]{7}$$

$$=\sqrt[4]{2^4 \times 7}$$

$$=\sqrt[4]{16 \times 7}$$

$$=\sqrt[4]{112}$$

Mixed toEntire

$$3\sqrt[3]{2}$$
 $7\sqrt[3]{-4}$
 $2\sqrt[4]{5}$
 $5\sqrt[3]{5} \times 2$
 $= \sqrt[3]{7} \times 4$
 $= \sqrt[4]{2} \times 5$
 $= \sqrt[5]{243} \times 2$
 $= \sqrt[3]{343} \times -4$
 $= \sqrt[4]{6} \times 5$
 $= \sqrt[5]{486}$
 $= \sqrt[3]{-1372}$
 $= \sqrt[4]{80}$

Quiz Outline

Quiz tomorrow

1) Evaluate

¥2197 = 13

#3) Entire to Mixed

#4 Mixed to Entire

2) Estimate (show work)

 $\frac{3250}{3125 \times 32}$ = 3125×32 = 532

Homework

Quiz tomorrow

19-23