

Oct. 30, 2018

1) Find the missing number (Show your work)

$$14^{-}=38416$$

2) Find the missing number

$$5^{6} = 15625$$

3) Place a <,> or = in the blank between (Show your work)

a)
$$5^7 \ge 4^8$$
 b) $3^3 \ge 5^2$
78 125 45 536 27 25

b)
$$3^3 \ge 5^2$$

Quiz Time

Homework

∞ **Solutions**

- 1. Identify the base of each power.

- **a)** 6^3 **b)** 2^7 **2 c)** $(-5)^4$ **-5 d)** 7^0 **7**
- 2. Use repeated multiplication to show why 35 is not the same as 53.

$$3^5 = 3 \times 3 \times 3 \times 3 \times 3$$

= 243

 $5^3 = 5 \times 5 \times 5$ = 125

Complete this table.

Power	Base	Exponent	Repeated Multiplication	Standard Form
44	7	ч	4 ×4×4×4	256
103	lo	3	ox ox10	1000
142	14	2	14×14	196
15		5	$1 \times 1 \times 1 \times 1 \times 1$	i i
qu	9	6	4x1x 9 x 4 x 4 X 4	531 441
5	5)	5x5x5x5x5x5x5	79 125

- Write each product as a power, then evaluate (standard form).
- **b)** 3 × 3 × 3 × 3 × 3 × 3=3 11
- 5. Find the missing exponent. (Show_work)
 - a) $7\sqrt{3} = 16\ 807$ b) $2\sqrt{3} = 32$ c) $2\sqrt{7} = 128$ d) $3\sqrt{9} = 81$ e) $9\sqrt{9} = 81$

- a) 7x7 = 49
 - 7x 7x 7 = 343
- b) $2 \times 2 = 4$ $2 \times 2 \times 2 = 8$
- $2 \times 2 \times 2 \times 2 = 16$

 $2 \times 2 \times 2 = 8$

c) $2 \times 2 = 4$

- 7x7x7x7 = 24017x7x7x7x7 = 16807
- 2 x2 x2 x2 = 16
- 2 x 2 x 2 x 2 x 2 = 32
- 2 x 2 x 2 x 2 x 2 = 32 2 x 2 x 2 x 2 x 2 = 64 $2 \times 2 = 121$
- d) $3 \times 3 = 9$
- e)9x9=81
- $3 \times 3 \times 3 = 27$
- 3x3x3 = 81
- **6.** Find the missing base.

- a) $4^{3} = 64$ b) $7^{2} = 49$ c) $1^{5} = 1$ d) $4^{3} = 729$
- 7. Evaluate each of the following. What do you notice?
 - a) 10^2
- **b**) 10³

1000

c) 10⁵

100 000

d) 10⁶

1 000 000

- The exponent on the 10 is the number of zeros that appear in standard form
- 8. Place $a \le 0$ or = in the box. (Show your calculations)
 - 128 216

What do we notice?

$$3^1 = 3$$

$$10^1 = 10$$

$$12^1 = 12$$

$$17^1 = 11$$

$$99^1 = 99$$

$$10^0 = 1$$

$$2^0 = 1$$

$$5^0 =$$

$$\chi' = \chi$$

$$3^{4} = 81$$
 $3^{5} = 3$ $3^{5} = 21$ $3^{5} = 3$ $3^$

Exponents

Whenever you have an exponent of 2, it is said to be squared. 3² might be read as 3 squared.

Whenever you have an exponent of 3, it is said to be cubed. 5^3 might be read as 5 cubed.

If the base is raised to the exponent 1, then the answer will always be the base itself.

examples: $15^{1} = 15$

 $24^1 = 24$ 6 $893^1 = 6893$

If the base is raised to the exponent 0, then the answer will always be 1.

examples: $26^{\circ} = 1$ $147^{\circ} = 1$ $945^{\circ} = 1$

Squares and Perfect Squares

Ex. 1)

What is the area of each below? Are they squares? Why or why not?

How do you know if a given area will make a square?

You will form a square if 2 of the factors are the same, for example an area of 25 cm^2 forms a square because $25 = 5 \times 5$

Squares and Perfect Squares

Not a square,

sides are not equal

equal

- Ex 2) Can you form squares with the following areas?
 - (a) 18 cm^2
- (b) 25 cm^2
- (c) 100 cm^2 (d) 60 cm^2
- a) No, there is no number you can multiply by itself to get 18
 - b) Yes, forms a square, 5 x 5=25
 - C) Yes because $10 \times 10 = 100$
 - d) No, can not form a square, there is no number you multiply by itself to get 60

How do you know if a given area will make a square?

You will form a square if 2 of the factors are the same, for example an area of 25 cm^2 forms a square because $25 = 5 \times 5$

Notes

"To Square a number" - Multiplying a number by itself

Example: "The square of 5" is $5 \times 5 = 25$ Thus

$$5^2 = 25$$

$$5^2 = 5x5 = 25$$

25 is a square number or Perfect Square

NOTES:

How can you find all of the perfect squares of the numbers between 1 and 250?

Multiply the same numbers to get a perfect square.

Side length	LxW	Perfect Square(Area	a)	
1	1 × 1 =	1	一、缸	
2	2 x 2 =	4	•	Perfect Squares
3	3 x 3 =	9		26.49.64.
4	4 × 4 =	16		81, 100, 107
5	5 x 5 =	25		144, 167, 192
6	6 × 6 =	36	6 -	225
٦	7 × 7 =	49	G	
8	8 × 8 =	64		
9	9 x 9 =	81		
10	10 × 10 =	100		
U	11 × 11 =	121		
15	12 × 12 =	144		
13	13 × 13 =	169		
	14 × 14 =	196		
	15 × 15 =	225		
•				

Ex. 5) A square has area of 144 cm². Find the perimeter of the square.

(Always include a diagram...doesn't have to be on graph paper if it doesn't ask for graph paper....so sketch)

Bass/Homework

Page 8

#4,#5) #6(don't use tiles sketch rectangles),

#9(Use graph paper), (if you don't have graph paper write out factors)

#10(c, d JUST sketch),

#11,

#12a

How can you find all of the perfect squares of the numbers between 1 and 250?

WS 2.3 Powers (Sept. 6 Homework).pdf

WS 2.3 Powers Soultions pdf.pdf