
Review worksheets #2.doc

Review Section 18.1-18.5

- 1. Given the reaction: $3A + 2B \rightarrow C + 2D$ is exothermic. Predict the shift in equilibrium when the following changes are imposed
- RIGHT Addition of A
- Decrease the amount of B Left b.
- Increase pressure RIGHT
- Inc temperature but d.
- Add a catalyst No change in equilibrium En Write the equilibrium law for the reaction

$$A+B \stackrel{>}{=} C+D$$

$$C+D = \frac{4600}{3600}$$

$$Cergy + X + Y \stackrel{>}{=} W + Z \qquad Keg < 1$$

Catalyst will not affect equilibrium: However, a catalyst will morease the rate of the reaction. It increases the rate of the reaction by Lowering the actuation energy so the reaction happens

* Know: Le Chatcher's Principle Activated Complex Catalyst

- 2. Given the reaction: : $CH_{4(g)} + H_2O_{(g)} \rightarrow CO_{(s)} + 3H_{2(g)}$ is exothermic. Predict the shift in equilibrium when the following changes are imposed
- Addition of water vapor, $R_{2(g)}$ Right b.
- Decrease pressure Right
- Dec temperature Right d.
- Add a catalyst No change in equilibrium e.
- Write the equilibrium law for the reaction. f.
- Given the following concentrations are founf in a 1L solution: [CH] = 0.12 mol q. $[H_{2(a)}] = 0.09 \text{mol}$; [CO] = 0.25 mol; $[H_2O] = 0.14 \text{mol}$ Determine the value of Keq. Does the reaction favor the products or

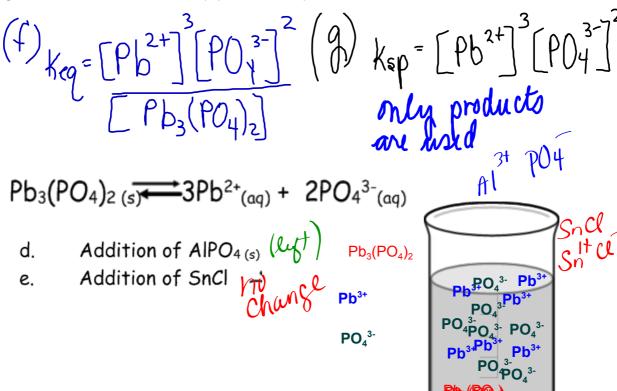
reactants(how do you know)?

NOTE: An inc in volume can be worked at as a decrease in pressure.

PT VJ } mversely his.
PJ VT } propor hombi

$$Fe^{+3}(aq) + SCN^{-1}(aq) \rightleftharpoons FeSCN^{+2}(aq)$$
yellow dark red

The reaction is endothermic, what will happen if we heat it? *It will shift right and get darker red*


$$Fe^{+3}(aq) + SCN^{-1}(aq) \rightleftharpoons FeSCN^{+2}(aq)$$
yellow dark red

$$Co(H_2O)6^{2+} + 4 Cl^{-} <---> CoCl4^{2-} + 6 H_2O$$

Keq = 0.028 a stress is applied and the new Keq is 0.91. What side does the equilibrium shift to?

- Given the reaction: $Pb_3(PO_4)_{2(s)} \longrightarrow 3Pb^{2+}_{(aq)} + 2PO_4^{3-}_{(aq)}$ 3. Predict the shift in equilibrium when the following changes are imposed
- Addition of $Al_2(SO_4)_3 \rightarrow No$ reaction Decrease the amount of PO_4^{34} Right
- What does the addition of a catalyst do to the activation energy?

 Addition of AIPO (Cama co catalyst do 37) b.
- Addition of AIPO4(s) (same as adding Pby3- common 10i) left d.
- Addition of SnCl > No change
- Write the equilibrium law for the reaction. f.
- Write the solubility product expression, how does it differ from Keq q.

- 4. Which substance is more soluble in water at 25°C.
 - Copper(II) sulfide

lead(II) sulfide? Why?

> Ksp = 8.0 \times 10⁻³⁷

 $CuS = Cu^{2} + S^{2}$

Both favor reactants (K5p21)
however, [cad(11) Sulfation larger: soluble

Which is more soluble

 $AB = A^{\dagger} + B^{\dagger}$

Ksp= 793

5. What is the concentration of iron(II) ions and hydroxide ions in a saturated solution of Fe(OH)₂ at 25°C. (Ksp = 7.9×10^{-16})

Fe(OH)₂
$$\Rightarrow$$
 Fe²⁺ + 2OH⁻
 χ \Rightarrow χ \Rightarrow

6. What is the concentration of zinc ions and phosphate ions in a saturated solution of $Zn_3(PO_4)_2$ at at

25°C. (Ksp = 9.0 x 10⁻³³)
$$Z n_{3}(P0_{4})_{a} \Longrightarrow 3Z n^{2+} + 2P0_{4}^{3-}$$

$$= 3(1.528 \times 10^{-7})$$

$$= 4.584 \times 10^{-7} M$$

$$= 2(1.528 \times 10^{-7})$$

$$= 3.056 \times 10^{-7} \text{ mod/L}$$

$$(8.33 \times 10^{-35})_{a} \Longrightarrow X$$

$$= 3.056 \times 10^{-7} \text{ mod/L}$$

What is the concentration of phosphate ions in a satutated solution of Cobalt(II) phosphate. [Ksp of Cobalt(II) phosphate is 2.05 x 10⁻³⁵]

$$Co_{3}(PO_{4})_{2} \Longrightarrow 3CO^{24} + 2PO_{4}^{3}$$

$$K_{8}P = \left[\left(o^{24} \right]^{3} \left[PO_{4}^{3} \right]^{2} \right] \times \frac{4.52 \times 10^{5}}{2.05 \times 10^{-35}} = \left(3x \right)^{3} \left(2x \right)^{2} = \frac{3(4.52 \times 10^{5})}{2.05 \times 10^{-35}} = \frac{37x^{2} \cdot 4x^{2}}{2.05 \times 10^{-35}} = \frac{37x^{$$

OMIT

What is the equilibrium concentration of copper 7. (II) ions in a 1.0L solution of copper(II) carbonate to which 0.033 mol of calcium carbonate is added.

 $CuCO_3 = 1.4 \times 10^{-10}$

$$O_{3} = 1.4 \times 10^{-10}$$

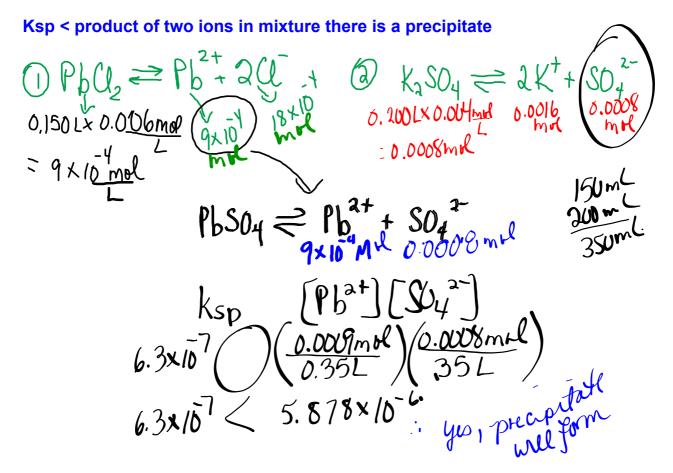
$$Cu CO_{3} = Cu^{2} + CO_{3}$$

$$Co_{3} = Cu^{2} + CO_{3}$$

$$Co_{3}$$

OMIT

What is the equilibrium concentration of 8. silver ions in a 1.0L solution of silver bromide to which 0.00022 mol of thallium(1) bromide, TIBr, * Common lon


has been added.

Ksp AgBr = 5.0×10^{-13} AgBr = $4g^{+}$ + Br 0.00022 $6x^{-}$ $6x^{-}$ 6x

9. Will a precipitate of lead(II) sulfateform if 150ml of 0.006 M lead(II) chloride $PbCl_2$ is mixed with 200ml of 0.004M potassium sulfate K_2SO_4 ? (Ksp $PbSO_4 = 6.3 \times 10^{-7}$)

Ksp > product of two ions in mixture there is no precipitate

Ksp > product of two ions in mixture there is no precipitate

Ksp < product of two ions in mixture there is a precipitate

10. Will a precipitate of silver chloride form if 700ml of 0.003 M barium chloride is mixed with 300ml of 0.001M silver carbonate? (Ksp AgCl = 1.8×10^{-10})

Precipital AgCl = 4×10^{-10} AgCl = 6×10^{-10} AgCl = 6

Ksp > product of two ions in mixture there is no precipitate

Ksp < product of two ions in mixture there is a precipitate

EXTRA: Will a precipitate of Barium Fluoride form if 125ml of 0.08 M barium phosphate is mixed with 105 ml of 0.08 M aluminum fluoride?

(Ksp BaF₂ = 1.84×10^{-7})

 $Ba_{3}(PO_{4})_{2} = 3Ba^{2+} + 2PO_{4}^{3-} + AIF_{3} = AI^{3+} + 3F_{0.08med,0.195L} = 0.03med = 0.0297$ 0.01med 0.01med 0.0297med 0.0297med 0.0297med 0.0297

 (84×10^{-7}) (Ba at) (F-)² (0.03mul) (0.089/mul)² (0.03mul) (0.089/mul)² (0.03mul) (0.089/mul)² (0.03mul) (0.089/mul)² (0.03mul) (0.089/mul)²

Ksp > product of two ions in mixture there is no precipitate

Ksp/< product of two ions in mixture there is a precipitate

Given the reaction: $Br_{(l)} \rightarrow Br_{(s)}$ 11. will the entropy increase or decrease in this reaction?

l is more disorderly than solid entropy decreases (disorder)

Nacl_(s) > Nat + Cl_{ag)} entropy MC

- 12. Classify the following as Spontaneous, Nonspontaneous, Cannot Determine
- a. entropy increases and enthalpy depreases
- b. enthopy decreases and enthalipy increases
- c. entropy increases and enthalpy increases

If Entropy 1 => Spontaneous
if Entropy 1 => Favors non-sport

Enthology 1 favors opent

Enthology 1 favors Non-Sport

Enthology 1 favors Non-Sport

Sp Sp

(b) Entropy 1, Enthalogy 1: Sport

Sp

(c) Entropy 1 Enthalogy 1: Cannot tell

NS

Enthology 1 favors opent

Enthalogy 1 favors Non-Sport

Enthalogy 1 favors opent

Enthalogy 1 favors Non-Sport

Enthalogy 1 fa

- 13. Given the following reactions, state the rate law:
- a. $2A + 3B \rightarrow 4C + D$
- b. $2H_2O_2 \rightarrow 2H_2O + O_2$

(a) rate = k[A] [B] (b) rate = k[H202] 2

and order [A] third order [B]

5th order overall

14. A combination reaction gave the following data: $A + B \rightarrow C$ Trial # [A] [B] Rate mol/L s

1 0.22 0.50 \times 4 0.03 \times 64 (4)

2 0.22 0.44 0.50 0.06

Determine the order for each reactant and the overall order for the reaction

rate = & [A][B] finity

4th order overall 1210.06 (6.44)[0.5]³

12109 TRIM 2 192 = K(0.22)/2)³

* Entropy

[B] = 3rd order } 4 v.

15. A combination reaction gave the following data: M + P + W -> U					
	Trial#	[M]	[P]	[W]	Rate mol/Ls 12
	1	0.014	0.020	0.030 14.5	0.0025
	2 ,00	0.014	0.020	0.090	0.2025
	3	0.14	0.020	0.090	20.25
	4.	0.14	0.01	0.090	1.265625

Determine the order for each reactant and the overall order for the reaction. Write the rate law.

15. A combination reaction gave the following data: ___ M + ___ P + ___ W ->

Trial#	[M]	[P]	[W]	Rate mol/Ls
1	0.014	0.020	0.030	0.0025
2	0.014	0.020	0.090	0.2025
3	0.14	0.020	0.090	20.25
4.	0.14	0.01	0.090	1.265625

Determine the order for each reactant and the overall order for the reaction. Write the rate law.

15	15. A combination reaction gave the following data: M + P + W -> 5						
	Trial#	[M]	[P]	[W]	Rate mol/Ls	(4)	
	1	0.05	0.03714	0.11	1.5	5	
	2	10.05	0,12	0.11	y 1536 x3	(4)	
	3	0.10	0.12 7	0.11	49152		
	4.	0.05	0.12	0.99	1536		

termine the order for each reactant and the overall order for the reaction. Write the rate law.

Entropy, Activated Complex, detriation Energy, Le Chatelier's Principle, Equilibrium, Free Ethergy.

TRIAL	A	В	C	rate	2
1	0.01	0.648	0.0/	5 > 64	8 B= 2
2	0.01	0.08	0.01	320	
3	0.01	0.01	0.05	3125	2 4
4	0.09	0.01	0.01	45	rale=K[A][B][C]
•					1000 100 30 3 - 3
TRIAL, A	В	C	rate	TRIAL, A	B C rate
2 0.0	_ '	0.01 0.01 × P	5 320 6	2 0.01	0.01 0.01 5
3 0.0	, ,	0.05	3125	3 0.01	0.01 0.05 3125
1	09 0.01	0.01	45	4 10.09.	0.01 0.01 45
		C=4			(A)=1
			rate=KEAJEB) [*] [() ⁴	

Review Le Chatelier's Chinciple:

**Concentration and Energy (Temperature)

Inc Amount => shifts opposite

Dec Amount => shift to where decrease

**Pressure
Inc Pressure shifts to side with least number)

of moles

Dec. Pressure shifts to side with most numbers mides

ENDOTHERMIC = Energy on light Exothermic = Energy on right equilibrium :

Reactants = Products

forward & reverse reactions occur at the same time:

energy +
$$HCO_3$$
 + H_2O \Rightarrow H_2CO_3 + OH^- pink clear

$$[Co(H_2O)_8]^{2^+}_{(aq)} + 4CI_{(aq)} + 50kJ = [CoCI_4]^{2^-}_{(aq)} + 6H_2O_{(aq)}$$
pink intense blue

pale pink 1 tense blue

ere $^{\prime\prime}$ $^{\prime\prime}$

energy +
$$CH_4$$
 + 30_2 \rightleftharpoons CQ + $4H_2C$
 $K_{eq} = 1.8$ $T = 18^{\circ}C$ Your left when energy $K_{eq} = 0.6$ $T = 2^{\circ}C$ tolur ways

$$A+3B \rightleftharpoons 2C+M + energy$$
 $K_{eg} = 50$ $T = 30^{\circ}C$
 $K_{eg} = /20$ $T = 10^{\circ}C$

Review worksheets #2.docx

Review worksheets #2.doc

Review worksheets #3.doc