Master 2.3

Extra Practice

Lesson 2.1: What Is a Power?

1. Identify the base of each power.

a) 6^3

b) 2^7

c) $(-5)^4$ **d**) 7^0

- Use repeated multiplication to show why 3⁵ is not the same as 5³. (Include standard form)
- **3.** Complete this table.

Power	Base	Exponent	Repeated Multiplication	Standard Form
4^4				
10 ³				
	14	2		
			$1\times1\times1\times1\times1$	
	9			531 441
			5x5x5x5x5x5x5	

Write each product as a power, then evaluate (standard form).

a) 6×6

b) $3 \times 3 \times 3 \times 3 \times 3 \times 3$

c) $10 \times 10 \times 10 \times 10$

d) $8 \times 8 \times 8$

5. Find the missing exponent. (Show work) **a)** $7^{\square} = 16\ 807$ **b)** $2^{\square} = 32$ **c)** $2^{\square} = 128$ **d)** $3^{\square} = 81$ **e)** $9^{\square} = 81$

Find the missing base.

a) 2 = 49 **b)** 2 = 49 **c)** 3 = 729

7. Evaluate each of the following. What do you notice?

a) 10^2

b) 10^3

c) 10^5

d) 10^6

8. Place a < 0, > or = in the box. (Show your calculations)

a) $2^7 \square 6^3$ **b)** $4^3 \square 2^6$ **c)** $9^3 \square 3^5$ **d)** $7^3 \square 6^5$