Sample Standard Deviation

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Population Standard Deviation

$$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$$

Sample Standard Deviation without calculating the mean

$$\mathbf{s} = \sqrt{\frac{n(\Sigma x^2) - (\Sigma x)^2}{n(n-1)}}$$

Mean of grouped Data $\mathbf{\bar{x}} = \mathbf{\hat{\Sigma}} \mathbf{f} \mathbf{\hat{x}}$

$$\bar{\mathbf{x}} = \frac{\sum f \mathbf{x}}{n}$$

NOTE

Variance =
$$(\sigma)^2$$

OR $(s)^2$

Standard Deviation of frequency table or grouped data

$$S = \sqrt{\frac{n \left[\sum (f \cdot x^2) \right] - \left[\sum (f \cdot x) \right]^2}{n (n-1)}}$$

Standard Deviation of frequency table or grouped data where x_m is the midpoint of the class interval

$$S = \sqrt{\frac{n \left[\Sigma(f \cdot x_{m}^{2})\right] - \left[\Sigma(f \cdot x_{n})\right]^{2}}{n (n-1)}}$$

Skewness

Percentile score = number of scores below data value + 0.5 x 100 total number of data values

Finding a Data Value

where c = data value position n = total number of values

Corresponding to a given Percentile

p = percentile

c = np

-if c is a whole number count go to thember between

<u> 100</u>

-if c is not a whole number round up

Outliers

Interquartile Range (or IQR): Q₃ - Q₁ To Check for Outliers: Q₃ +1.5 IQR

Q₁ - 1.5 IQR

RANGE: Highest-Lowest

MIDRANGE: Highest + Lowest

2

BOXPLOT

5 - number summary

- **Minimum**
- first quartile Q1
- Median (Q2)
- third quartile Q3
- **Maximum**

Z-scores

Sample z-score: $z = \underline{x} - \overline{x}$

S

Population z-score

 $z = \frac{x - \mu}{}$

To find the x-value: $x = z\sigma + \mu$

2

Probability Distribution

mean of a probability distribution $\mu = \Sigma[x P(x)]$

variance of probability distribution $\sigma^2 = \left[\sum x^2 P(x)\right] - \mu^2$

standard deviation of probability_o = $\sqrt{\left[\sum x^2 P(x)\right] - \mu^2}$

Expected Value

 $\mathsf{E} = \mu = \sum [x \cdot \mathsf{P}(x)]$

The average value of outcomes

Binomial Distribution

Mean of a binomial distribution $\mu = n \cdot p$

Standard deviation of a binomial distribution

$$\sigma = \sqrt{n \cdot p \cdot q}$$

Binomial Probability Formula

$$P(X) = {}_{n}C_{x} \cdot p^{x} \cdot q^{n-x}$$

Central Limit Theorem

the mean of the sampling distribution $\mu_{\overline{x}} = \mu$

the standard deviation of the sampling distribution (standard error) $O_{\overline{x}} = \frac{O}{\sqrt{n}}$

central limit theorem formula for $z = \frac{x - \overline{\mu}}{\sigma / \sqrt{n}}$

Population
z-score

$$z = \frac{x - \mu}{\sigma}$$

To find the x-value:
 $x = z\sigma + \mu$

Confidence Interval

$$\overline{x} \pm z_{\alpha/2} \cdot \underline{\sigma} \over \sqrt{n}$$

Confidence Interval for t-distribution

$$\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$

Confidence Interval for Proportion

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

Margin of error (E) or Error Estimate:

$$z_{\alpha/2}.\underline{\sigma}{\sqrt{n}}$$

Sample size

$$n = \left(\frac{\frac{Z_{\alpha/2}\sigma}{E}}{E}\right)^2 \quad \text{or} \quad n = \frac{(Z_{\alpha/2})^2 \hat{p} \hat{q}}{E^2}$$

Note: Point estimate is the mean

Hypothesis Testing: null always contains the equality p-value method and critical value method

Test Statistic

$$z = \underbrace{x - \overline{\mu}}_{\sigma / \sqrt{n}}$$

Test Statistic for a proportion

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$

Critical Value Method

If the test statistic falls in the tail, reject the null

P-Value Method

P-value is the area in the tail of the test statistic

if: $P \leq_{\alpha}$ reject Ho

 $P > \alpha$ fail to reject Ho

Two Sample Means Large Samples Test for Independence

$$\mu_{\bar{x}_1 - \bar{x}_2} = 0$$
 $\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

Test Statistic

$$z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Contingency Tables Chi Square test of Independence Ha: row variable is dependent on column

Expected (E): <u>(row total) x (column total)</u> Value grand total

Test of Independence Test Statistic

$$\chi^2 = \sum \frac{(O - E)^2}{E}$$

Ho: row variable is independent of column variable

variable

Critical Values

- Found in Table G using degrees of freedom = (r - 1)(c - 1)
 - r is the number of rows c is the number of columns
- 2. Tests of Independence are always right-tailed.

Formula for the Correlation Coefficient r

$$r = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{\sqrt{[n(\Sigma x^2) - (\Sigma x)^2][n(\Sigma y^2) - (\Sigma y)^2]}}$$

where n is the number of data pairs.

Compute r on the calculator

- When calculating a correlation coefficient, an obvious question arises: Is the implied relationship statistically significant, or due to random chance?
- We can perform a hypothesis test testing whether there is significant evidence against the correlation coefficient being zero

$$H_0: \rho = 0$$

$$H_A: \rho \neq 0$$

Formula for t Test Value for the correlation Coefficient

$$t = r\sqrt{\frac{n-2}{1-r^2}}$$

Use T table and n-2 degrees of freedom for critical value