Number Relations Functions 10 Exam Review

27 Multiple Choice

65 Open Response

Review of Types of Number Systems

Natural Numbers - either a positive or a non-negative integer. Ex. 1, 2, 3 etc

Whole Numbers - couting numbers including zero. Ex. 0, 1, 2, 3, etc

Integers - all positive whole numbers greater then 0 and all negative numbers less then 0. Zero is not an integer.

Rational Numbers - all whole numbers, fractions, mixed numbers, decimals and their negatives are rational numbers. The decimal must repeant of terminate also.

Irrational Numbers - decimals that never terminate or repeat.

Real Numbers - all rational and irrational numbers are real numbers

Exercise

Complete the table

	N	W	I	Q	Q	R
5						
$\frac{-2}{\frac{3}{4}}$						
4						
-1.3						
√7 √9.5						
√9.5						

Discrete and Continuous Data

Discrete Data - points are not joined together with a line on the graph

Continuous Data - points are joined together

Examples:

Linear graphs - the data is in a straight line

Non-Linear Graphs - the data is not in a line. It can be curved or spread out with no real pattern

Write an equation and use it to solve the following:

A rental car company charges a base rate of \$45 for a compact car and an additional \$2 for every 10 kilometers driven.

- a) How much would it cost you if you plan to drive 100 kms?
- b) How much would it cost you if you plan to drive 500 kms?
- c) If your bill was \$225, how many kms did you drive?

Adam is going to the mall. Foran's Taxi has a flat rate of \$3.50 plus \$0.25 for every kilometre driven. Discount charges \$0.35/km

- a) Write an equation that represents the problem.
- b) How much will it cost him at each company to travel 25 km?
- c) How much will it cost him to travel 37 km?
- d) When will both companies take you the same distance and cost the same?

hey words

per

for every

for each

An electrician charges \$32 per hour plus a base charge of \$55.

a) What equation would indicate how he charges his customers?

$$y = mx + b$$

$$f(x) = mx + b$$

b) On a recent job, he was paid \$345. How many hours did the electrician work?

$$345 = 32h + 55 - 55$$

$$290 = 32h$$

$$32h + 55 - 55$$

$$290 = 32h$$

$$32h + 55 - 55$$
C) Suppose the electrician worked 12 hours. How much would he get paid?

15% final 5days
$$<$$
 (85%)

Mark \times 0.85

 $77 \times 0.85 = 65.45\%$

63% \times 0.85 = 53.55

 $\frac{15}{85} + \frac{15}{15} = \frac{\text{Report}}{100}$

6.15 = 43%

Example (85%)

> 5days (class 70%)

Mark
$$x 0.75 = 75$$

$$\frac{57.5}{70} + \frac{27.5}{30} = \frac{80}{100}$$

$$\frac{927.5}{50} = \frac{100}{100}$$

Solve the following:

a)
$$4(x-2)-3(x+1)=1$$

 $4(x-2)-3(x+1)=1$
 $2(x-3)-3=1$
 $2(x-1)^{3/3}$
 $2(x-1$

Review from grade 9

The Coordinate Plane

Each point has an x and y value

This is called an ordered pair

SLOPE

Slope = m =
$$\frac{rise}{run}$$
 = $\frac{\Delta y}{\Delta x}$ = $\frac{y_2 - y_1}{x_2 - x_1}$

Find the slope of the line that passes through the points (0, 5) and (4, 10)

$$M = 10 - 5$$
 $4 - 0$
 $= \frac{5}{4}$

Using the points below, find the slope of each line

$$\frac{y_{2}-y_{1}}{2x_{1}-x_{1}} = \frac{5++1}{4++1}$$

$$\frac{5}{4} = \frac{5++1}{4++1}$$

$$\frac{5}{4} = \frac{6}{4}$$

Finding Intercepts

X - Intercept - is where the graph crosses the x-axis (y = 0)

Y-Intercept - is where the graph crosses the y-axis (x = 0)

Example: What are the x and y intercepts for 2x + 3y = 12

X-intercept (let y=0)

$$2x + 3y = 12$$

 $2x + 3(5) = 12$
 $\frac{2x}{2} = \frac{12}{2}$
 $\frac{2}{2}$

$$\frac{3y}{3} = \frac{-2x + 12}{3}$$

$$y = -\frac{2}{3}x + \frac{4}{3}b = 4$$
 $1 = -\frac{2}{3}$
 $(0, 4)$

Find the x and y intercepts for the following lines.

a)
$$x + y = 7$$

b)
$$2x - 3y = 18$$

c)
$$4x + 3y = 24$$

d)
$$x - 3y = 9$$

Finding the Equation of a Line

Using slope y-intercept form to find the equation of a line

Slope y - intercept form
$$y = mx + b$$
Slope Y-Intercept

Slope - the steepness of a line

y - intercept - the point where a graph crosses the y-axis; the point where x = 0

Example:

Given that a line has a slope of 3 and a y intercept of -2, what is the equation of the line?

Point - Slope Form

You can also find the equation of a line if you are given a point and the slope of the line. In order to do this you use the formula:

The x and y values from the given point

Example 1: Find the equation of a line that passes through (-3,4) and has the same slope as

$$y=3x+2$$
.
 $M=3$ (-3.4) $y-y_1=m(x-x_1)$
 $y-y=3(x-3)$
Point-Slope $y-y=3(x+3)$
 $y-y=3x+4$
Slope-intercept $y=3x+13$
 $y=3x+13$
General $y=3x-y+13$
Form

X X / II		. 4.		12					1	•		41		1	 			11			 •				<u> </u>		
Wł										ıcu	lar	, th	leir	SI	ope	s a	re 1	the	ne	gat	ive				<u> </u>		L
rec	cipi	roc	al	of	one	e ai	10t	her	•																		
Exa	am	pl	e																								
Th	e li	ne	s y	= 2	2 x	+ 1	an	d y	=	-1/2	2x ·	+ 1	ar	e p	erp	en	dic	ula	ır.								
Ag	air	1, y	ou	ca	n s	ee	this	W	her	ı ye	ou :	gra	ph	th	e tv	VO	lin	es (n a	a co	or	din	ate	•			
pla	ne	•																									
\neg	\dashv																										
	\dashv																										
	\dashv							-																			
	\dashv																										
	_																										
\dashv	\dashv				 			<u> </u>													<u> </u>			-	-	-	
	_																								<u> </u>		<u> </u>
\dashv	_							_											_		<u> </u>				<u> </u>	L	
_	_				_																				<u> </u>		
	_													Ш													

What is the slope of each pair of lines? Are they parallel or perendicular?

a)
$$y = 2x - 4$$

 $y = 2x - 8$

b)
$$y = 4$$

 $y = 9$

c)
$$y = 4x$$

 $y = -1/4 x$

Find the x and y intercepts of each line.

a)
$$2x - 4y = 0$$

b)
$$y = 3x - 2$$

c)
$$3x + 3y = 9$$

Write the equation of each line in the form y = mx + b

a)
$$m = 4$$

y-int = -2

c)
$$m = 2$$

y-int = 0

d)
$$(4,0) (6,4)$$

y-int = 3

e)
$$(5,1)(-2,6)$$

same y-int as $y = 3x + 2$

Rearranging Equations

Anytime we have looked at equations of lines that have all been in the form y = mx + b. However, there are some cases in which an equation is written in a different form and we have to rearrange it in order to put it in y = mx + b form.

For example: Write 3x + y = 7 in the form y = mx + b

Rearrange the following equations in the form y = mx + b

a)
$$2x + y = 4$$

b)
$$3x - 3y = 9$$

c)
$$x + 2y - 12 = 0$$

d)
$$y + 4 = 10x$$

e)
$$2y = 50x - 100$$

f)
$$2x = -y + 13$$

Copy First, then complete.

- 1. Find the slope of the following:
 - a. (4,5) and (3, -2)
 - b. (-3,1) and y-intercept of 5
 - c. 2x y 3 = 0
- 3. Find the x and y intercept

a.
$$2x - 3y = 6$$

b.
$$x = y - 5$$

c.
$$7y + 2x - 14 = 0$$

5. Write the following equations in Standard Form

a.
$$2x - 3y = 6$$

b.
$$x = y - 5$$

c.
$$7y + 2x - 14 = 0$$

2. Rearrange for Y and state the slope and y-intercept

a.
$$2x - 3y = 6$$

b.
$$x = y - 5$$

c.
$$7y + 2x - 14 = 0$$

4. Write the equation of the line given:

a.
$$m=3$$
 $b = -1$

b.
$$m = 1/2$$
 $b = 0$

6. On graph paper, graph the following:

a.
$$y = 2/3 x + 1$$

b.
$$y = -3x + 4$$

c.
$$4x - 2y + 6 = 0$$

d.
$$y = 3$$

e.
$$x = -2$$

$$\mathbf{f.} \quad \mathbf{y} = \mathbf{x}$$

Finding the Intersection Points of Lines

Intersection Point - the point where the graphs of two equations cross

How do we find the Intersection Point of 2 graphs?

Example:

Draw the graphs of and find the point of intersection

$$x + y = 8 \qquad x - y = 12$$

There are 2 different ways that we can write our equation.

Method 1: Slope Y-Intercept Form Y = mx + B

Method 2: Standard Form Ax + By + C = 0

$$A > 0$$
 $B \neq 0$

Write the following in Standard Form

a)
$$y = 3x + 4$$

b)
$$y = -2x - 6$$

Write the following in Slope Y-Intercept form

a)
$$10x + 5y - 45 = 0$$

b)
$$2x - y + 10 = 0$$