

To support the tree, a guy wire 8 m long is attached to the trunk and then secured in the ground 5 m from the base of the tree. The tree is 12 m in height. Find "t' to the nearest tenth of a metre.

What do you know????

$$\frac{144}{196} = \frac{144}{116} = \frac{12}{14} = \frac{6}{7}$$

$$\frac{3}{1000} = \frac{3 \log 5}{1000} = \frac{5}{10} = \frac{1}{2}$$

TRY THIS

Write the two consecutive perfect squares closest to 20.

Fill in the table until the square of the estimate is within 1 decimal place of 20.

Estimated value of √20	Square of estimate

4.1 Math Lab: Estimating Roots

Write a fraction that is equivalent to:

Just as with fractions, Radicals expressions have equivalent expressions:

$$\sqrt{16\cdot9} = \sqrt{16\cdot9} = \sqrt{16$$

Same works if we change the "index":

$$\sqrt[3]{8 \cdot 27} =$$

$$=$$

$$=$$

$$=$$

$$1^{0} = 1$$
 $1^{1} = 1$
 $1^{2} = 1$
 $1^{3} = 1$
 $1^{4} = 1$
 $1^{5} = 1$

$$2^{0} = 1$$
 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 16$
 $2^{5} = 32$

$$3^{0} = 1$$
 $3^{1} = 3$
 $3^{2} = 9$
 $3^{3} = 27$
 $3^{4} = 81$
 $3^{5} = 243$

$$4^{0} = 1$$
 $4^{1} = 4$
 $4^{2} = 16$
 $4^{3} = 64$
 $4^{4} = 256$
 $4^{5} = 1024$

$$5^{0} = 1$$

 $5^{1} = 5$
 $5^{2} = 25$
 $5^{3} = 125$
 $5^{4} = 625$
 $5^{5} = 3125$

$$6^{0} = 1$$
 $6^{1} = 6$
 $6^{2} = 36$
 $6^{3} = 216$
 $6^{4} = 1296$
 $6^{5} = 7776$

$$7^{0} = 1$$
 $7^{1} = 7$
 $7^{2} = 49$
 $7^{3} = 343$
 $7^{4} = 2401$
 $7^{5} = 16807$

$$8^{0} = 1$$
 $8^{1} = 8$
 $8^{2} = 64$
 $8^{3} = 512$
 $8^{4} = 4096$
 $8^{5} = 32768$

$$9^{0} = 1$$

 $9^{1} = 9$
 $9^{2} = 81$
 $9^{3} = 729$
 $9^{4} = 6561$
 $9^{5} = 59049$

$$10^{0} = 1$$

 $10^{1} = 10$
 $10^{2} = 100$
 $10^{3} = 1000$
 $10^{4} = 10000$
 $10^{5} = 100000$

Reducing Radicals

Multiplication Property of Radicals

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$
,

where n is a natural number, and a and b are real numbers

Same works if we change the "index":

$$\sqrt[3]{3 \cdot 8 \cdot 27} = \sqrt[3]{8 \cdot \sqrt[3]{27}}$$

= 2 · 3 Or
= 6

$$\sqrt[3]{8 \cdot 27} = \sqrt[3]{216}$$
= 6

$$\begin{array}{c}
\sqrt{4.9} \Rightarrow \sqrt{36} \\
\sqrt{4.9} \Rightarrow \sqrt{36} \\
\sqrt{4.9} \Rightarrow \sqrt{3} \\
\sqrt{4.9} \Rightarrow \sqrt{4.9} \Rightarrow \sqrt{4.9} \\
\sqrt{4.9} \Rightarrow \sqrt{4.9} \Rightarrow \sqrt{4.9} \\
\sqrt{4.9} \Rightarrow \sqrt{4.9} \Rightarrow \sqrt{4.9} \Rightarrow \sqrt{4.9} \\
\sqrt{4.9} \Rightarrow \sqrt{4.9} \Rightarrow$$

NEED in front of you perfect squares, cubes

Evaluate each radical. Justify you answer

Estimate to one decimal

Remember

Rational numbers are numbers that can be written as a fraction or is a decimal that repeats or terminates. (a) $\sqrt{\frac{12\sqrt{100000}}{100000}}$ (b) $\sqrt{\frac{9}{2}}$

 $\frac{6}{10} = \frac{3}{5}$ 0.60
0.60

Irrational numbers are numbers that cannot be written as a fraction and its decimal neither terminates or repeats.

Class Work/Homework

Page 206 # 1 to #6 2f)
$$\sqrt{2.25} = \sqrt{\frac{225}{100}} = \sqrt{\frac{525}{100}} = \frac{1.5}{100} = 1.5$$

STOP