#2 Combining transformation Function Assign #2.doc

1. Suppose (12,5) is the point of the graph of f(x), for each of the following, name the image point

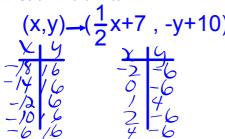
-			/ la 15)	
		Mapping Rule		Image Point
	a. y= 5f(x + 9)-6	$(x,y) \rightarrow (x^{-1})$	3546)	(3, 19)
	b. y = f(-3(x-4))+2	(x,4)>(-/3)	C+45442)	(0,7)
	c. $y = -2f(x)+10$	$(x_1y) \rightarrow (x_1)$,- <u>2</u> <u>ú</u> +10	(12,0)
	d. y = 4f(2x+12)-1	(x,y)7(bx	(-64y-1)	(0,19)
	e. $y = -3f(\frac{1}{4}(x-2))+9$	(x,Ÿ) <i>>(५</i> x	(+2,-3y+9)	(50, -6)
	> (d) y=4f(a	X+12)- 1	rewrite	:
,	y=4f(2	(x+6))-l		

- 2. Write the *equation* of the following functions, given the transformations stated.
 - a. y = f(x) is vertically stretched by a factor of 6, reflected in the y-axis, translated 7 units to the left and translated 4 units downwards.

b. y = f(x) is horizontally stretched by a factor of $\frac{1}{5}$, reflected in both the x-axis and the y-axis, translated 11 units up.

- y=-f(-5x)+//
- c. y = f(x) is vertically stretched by a factor of 3, horizontally stretched by a factor of 8 and reflected in the x-axis and translated 9 units right

$$\begin{array}{ccc}
VR & & HR \\
VS & & HS & & \\
VT & & HT & & \\
\end{array}$$

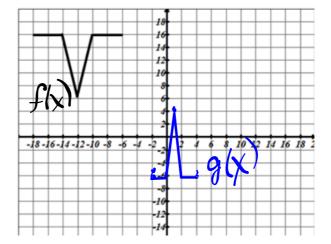

$$y = -3f\left(\frac{1}{8}(x-9)\right)$$

d. y = f(x) is vertically stretched by a factor of 7, translated 10 units left and 8 units down

$$\frac{VR}{VS}$$
 $\frac{HR}{VS}$ $\frac{HS}{VT}$ $\frac{HS}{VT}$ $\frac{10}{VT}$

3. Given the graph of f(x), sketch the graph of the following functions, and state the domain and range for each:

a. g(x) = -f(2(x-7))+10



Domain $f(x) -18 \le x \le -6$

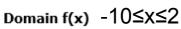
Range f(x) 6≤y≤16

Domain g(x) -2≤X≤4

Range $g(x) -6 \le y \le 4$

b.
$$h(x) = 3f(-(x-2)) + 10$$

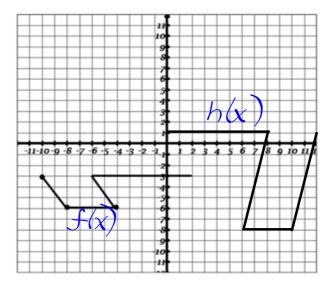
$$(x,y) \Rightarrow (-x+3, 3y+10)$$

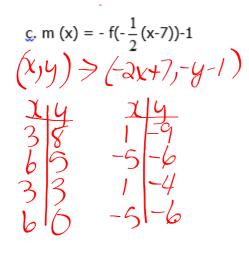

$$-x \mid y \qquad x \mid y$$

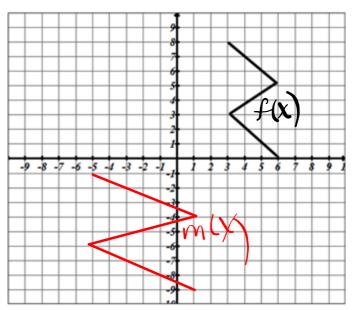
$$-10 \mid -3 \qquad 12 \qquad 1$$

$$-8 \mid -6 \qquad 10 \qquad -8$$

$$-4 \mid -6 \qquad 6 \mid -8$$


$$-6 \mid -3 \qquad 0 \mid 1$$




Range f(x) $-6 \le y \le -3$

Domain h(x) $0 \le x \le 12$

Range h(x) -8≤y≤1

Domain f(x) $3 \le x \le 6$ Range f(x) $0 \le y \le 8$

Domain m(x) $-5 \le x \le 1$ Range m(x) $-9 \le y \le -1$ 4. Given the graph of h(x), sketch h⁻¹(x) State the domain and range of h⁻¹(x) Are there any invariant points

Domain $h^{-1}(x)$ $-7 \le \chi \le -1$ Range $h^{-1}(x)$ $2 \le y \le 6$

5. State The equation of the inverse:

a.
$$f(x) = 4(x+2)^{2}$$

 $y = 4(x+2)^{2}$
 100^{11} $x = 4(y+2)^{2}$
 $\frac{x}{4} = (y+2)^{2}$
 $\sqrt{\frac{x}{4}} = y+2$
 $\sqrt{\frac{x}{4}} - 2 = y$
 $\int_{-\frac{x}{4}}^{-\frac{x}{4}} - 2$

b.
$$f(x) = \frac{9x-3}{4x+1}$$

$$y = \frac{9x-3}{4x+1}$$

$$\ln x = \frac{9y-3}{4y+1}$$

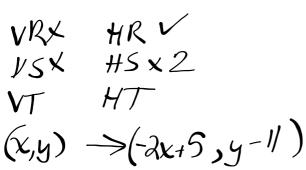
$$\chi(4y+1) = 9y-3$$

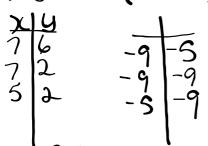
$$4xy+x=9y-3$$

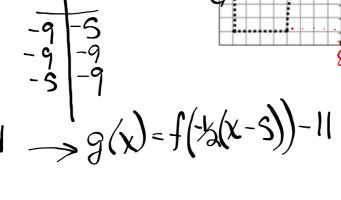
$$4xy-9y=-x-3$$

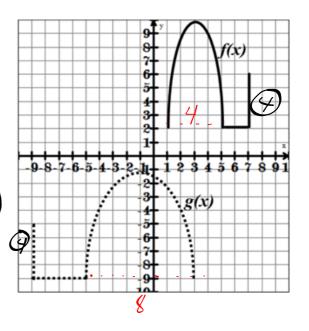
$$y(4x-9)=-x-3$$

$$y=-x-3$$


$$4x-9$$


$$f^{-1}(x)=-x-3$$


$$4x-9$$


c.
$$y = 5\sqrt{3}x + 1 + 11$$

Inv. $x = 5\sqrt{3}y + 1 + 11$
 $x - 11 = 5\sqrt{3}y + 1$
 $x - 11 = 5\sqrt{3}y + 1$
 $(x - 11)^2 = 3y + 1$

6. Given f(x) describe the equation of g(x) as a transformation of f(x)

#2 Combining transformation Function Assign #2.doc