\qquad
\qquad

Master 2.3

Extra Practice

Lesson 2.1: What Is a Power?

1. Identify the base of each power.
a) 6^{3}
b) 2^{7}
c) $(-5)^{4}$
d) 7^{0}
2. Use repeated multiplication to show why 3^{5} is not the same as 5^{3}. (Include standard form)
3. Complete this table.

Power	Base	Exponent	Repeated Multiplication	Standard Form
4^{4}				
10^{3}				
	14	2		
			$1 \times 1 \times 1 \times 1 \times 1$	
	9			531441
			$5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5$	

4. Write each product as a power, then evaluate (standard form).
a) 6×6
b) $3 \times 3 \times 3 \times 3 \times 3 \times 3$
c) $10 \times 10 \times 10 \times 10$
d) $8 \times 8 \times 8$
5. Find the missing exponent. (Show vork)
a) $7 \square=16807$
b) $2 \square=32$
c) ${ }^{-}=128$
d) $3^{\square}=81$
e) $9^{\square}=81$
6. Find the missing base.
a) $\quad I^{3}=64$
b) $\ldots^{2}=49$
c) $ـ^{5}=1$
d) $\ldots^{3}=729$
7. Evaluate each of the following. What do you notice?
a) 10^{2}
b) 10^{3}
c) 10^{5}
d) 10^{6}
8. Place $\mathrm{a}<,>$ or $=$ in the box. (Show your calculations)
a) $2^{7} \square 6^{3}$
b) $4^{3} \square 2^{6}$
c) $9^{3} \square 3^{5}$
d) $7^{3} \square 6^{5}$
