Mean of Grouped Data

Mean of a Frequency Distribution

Approximated by

oproximated by
$$\overline{x} = \frac{\sum (x_n, f)}{n} \qquad n = \sum f$$

Use when the data is grouped in intervals individual values

where x and f are the midpoints and frequencies of a class, respectively

Note: x_m refers to the midpoints of each class

Finding the Mean of a Frequency Distribution

In Words	In Symbols
 Find the midpoint of each class. 	$x = \frac{\text{(lower limit)+(upper limit)}}{2}$
Find the sum of the products of the midpoints and the frequencies.	$\Sigma(x_{m},f)$
3. Find the sum of the frequencies.	$n = \Sigma f$
 Find the mean of the frequency distribution. 	$\overline{x} = \frac{\Sigma(x_m f)}{n}$

Example: Find the Mean of a Frequency Distribution Grouped Data

Use the frequency distribution to approximate the mean number of minutes that a sample of Internet subscribers spent online during their most recent session.

Class	Midpoint	Frequency, f	
7 – 18	12.5	6	6
19 – 30	24.5	10	
31 – 42	36.5	13	
43 – 54	48.5	8	
55 – 66	60.5	5	
67 – 78	72.5	6	
79 – 90	84.5	2	

$$f \cdot x_m$$

• Approximated by $\overline{x} = \frac{\sum (x_m f)}{n}$

What is n?

Solution: Find the Mean of a Frequency Distribution

Class	Midpoint, x	Frequency, f	$f \cdot x_m$
7 – 18	12.5	6	12.5.6 = 75.0
19 – 30	24.5	10	$24.5 \cdot 10 = 245.0$
31 – 42	36.5	13	$36.5 \cdot 13 = 474.5$
43 – 54	48.5	8	$48.5 \cdot 8 = 388.0$
55 – 66	60.5	5	$60.5 \cdot 5 = 302.5$
67 – 78	72.5	6	72.5.6 = 435.0
79 – 90	84.5	2	$84.5 \cdot 2 = 169.0$
		n = 50	$\Sigma(\underline{x}.\underline{f}) = 2089.0$

$$\overline{x} = \frac{\Sigma(x \cdot f)}{n} = \frac{2089}{50} \approx 41.8 \text{ minutes}$$

modal class: 31-42

Solution: Find the Mean of a Frequency Distribution

Class	Midpoint, x	Frequency, f	$f \cdot x_m$
7 – 18	12.5	6	12.5.6 = 75.0
19 – 30	24.5	10	24.5·10 = 245.0
31 – 42	36.5	13	$36.5 \cdot 13 = 474.5$
43 – 54	48.5	8	$48.5 \cdot 8 = 388.0$
55 – 66	60.5	5	$60.5 \cdot 5 = 302.5$
67 – 78	72.5	6	$72.5 \cdot 6 = 435.0$
79 – 90	84.5	2	84.5·2 = 169.0
		n = 50	$\Sigma(\underline{x}.\underline{f}) = 2089.0$

$$\overline{x} = \frac{\Sigma(x \cdot f)}{n} = \frac{2089}{50} \approx 41.8 \text{ minutes}$$

modal class: 31-42

(class that has the highest frequency)

 These data represent the net worth (in millions of dollars) of 45 national corporations.

Class limits	Frequency	X_{m}	$ f \cdot x_m$
10-20	2	15	30
21-31	8		
32-42	15		
43-53	7		district to
54-64	10		
65-75	3		4.10
	n=45		

modal class: 32-42

Textbook Questions: page 110

1,3,7,13,15,17,20

find:
mean
median
median
mode
modal class
midrange