NOTES - Populations.pdf

INVESTIGATION 1.2: 'A Sample Census - Wildlife on the Move'

- population the total number of individuals of a single species that live in a designated region at a given time.
 - ex: human population is ~ 6 billion
- **population density** the number of individuals of a single species that live in each unit area (km², mi², hectare, acre) of habitat at a given time.
 - ex: deer population is 6 deer per square mile
- census a count of the population.
- **true census** actual count of all of the individuals of a species in a given area.
- sample census is an estimate of the population.

(used when actual count is not possible)

ESTIMATED POPULATION = Estimated Population Density x Area of Habitat

• The 'mark-return-recapture method' is used to estimate population density.

ex: DFO at Millerton and Cassillis estimate salmon populations on Miramichi River.

$$P = \frac{T_F T_L}{M}$$
 P - estimated population
$$T_F - \text{total animals captured in first trapping}$$

$$T_L - \text{total animals captured in later trapping}$$

$$M - \text{recaptured animals that are marked}$$

copy down

Changing Population Sizes

Four variables affect changes in population sizes:

- 1. births
- 2. deaths
- 3. immigration act of entering
- 4. emigration act of leaving

A person emigrates **from** Germany and then immigrates **to** Canada.

```
population change = (births + immigration) - (deaths and emigration)

gain

in

population

population
```

The term <u>population growth</u> refers to how the number of individuals in a population increases (or decreases) with time.

Under ideal conditions:

NOTES - Exponential Growth.pdf Print out for class

- 1. the <u>biotic potential</u> of a population is the maximum rate at which it can increase.
- 2. <u>exponential growth occurs</u> the population increases by the same percent from one time period to the next.

http://www.otherwise.com/population/exponent.html

Exponential Growth of Bacteria - Video Clip

http://www.youtube.com/watch?v=KIpcCyuypzg

Copy Down

Calculating Exponential Growth

http://www.math.andyou.com/pdf/152.pdf

The growth rate of a bacteria culture is 52% each <u>hour</u>. Initially, there are two bacteria. How many bacteria are there after 12 hours?

A = ?

P =
$$\frac{7}{2}$$
 $\frac{7}{2}$
 $\frac{7}{2}$

Handed out

In nature, there are always limits to growth. A population will reach a size limit imposed by a shortage of one or more of the **limiting** factors of light, water, space and nutrients.

<u>Carrying capacity</u> represents the highest population that can be maintained for an indefinite period of time by a particular environment.

When a population grows exponentially at first, and then levels off to a stable number near the carrying capacity, it is called **logistic growth**. Logistic growth is much more common in nature than long-term exponential growth.

<u>Natural Capital</u> - refers to all the natural resources on which people depend upon and includes resources we use to produce manufactured goods.

Exponential Growth -> "J"Curve Logistic Growth -> "S" curve

ON TEST

Doubling Time - Rule of 70

doubling time = 70 growth rate

ie/ annual growth rate of 7%

doubling time = $\frac{70}{7}$ = 10 years

NOTES - Populations.pdf

NOTES - Exponential Growth.pdf