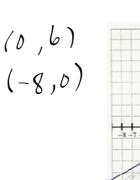
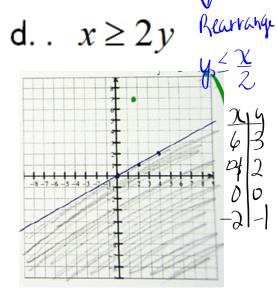
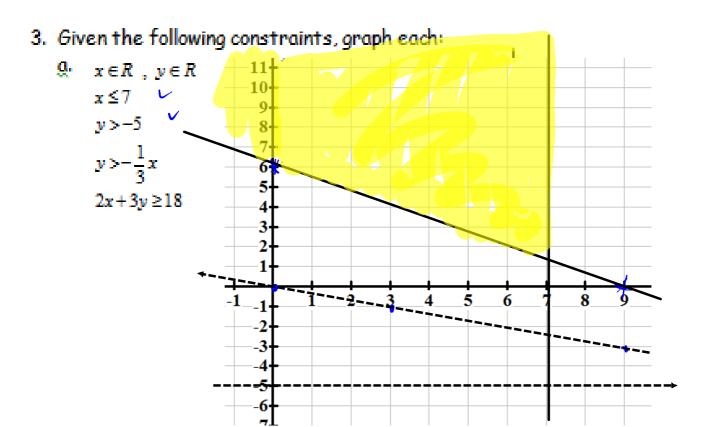
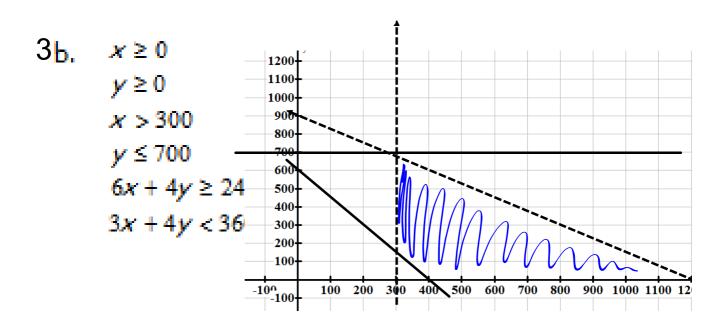
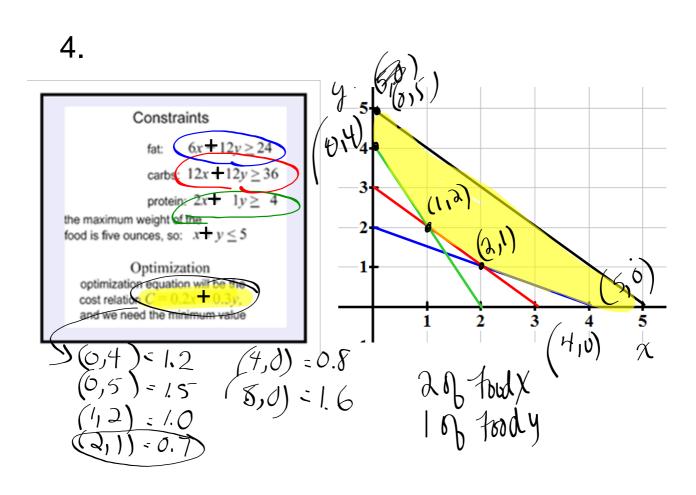

Unit One: Linear Inequalities

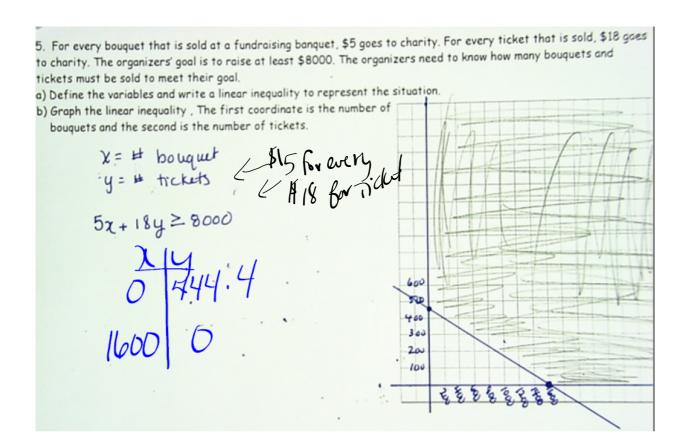



2. Graph the inequality:









4. In order to ensure optimal health for your puppy a lab technician recommends to feed the pup a daily diet containing a minimum of 24 grams (g) of fat, 36 g of carbohydrates, and 4 g of protien. The pup should be fed no more than five ounces of food a day. Rather than order food that is custom-blended, it is cheaper to order Food A and Food B, and blend them Food X contains 6 g of fat, 12 g of carbohydrates, and 2 g of protein per ounce, and costs \$0.20 per ounce. Food Y contains 12 g of fat, 12 g of carbohydrates, and 1 g of protein per ounce, at a cost of \$0.30 per ounce. What is the optimal blend? Constraints $6x + 12y \ge 24$ carbs: $12x + 12y \ge 36$ protein: $2x - 1y \ge 4$ the maximum weight of the food is five ounces, so: $x + y \le 5$ Optimization optimization equation will be the cost relation C = 0.2x + 0.3y. and we need the minimum value (2,1) Minimum (4,0) = 0.8

2 of Food X

1 of Food Y

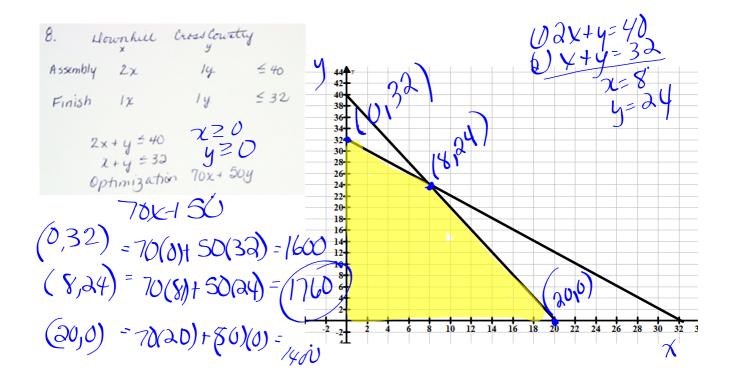
b.
$$\chi$$
 = # high school griends

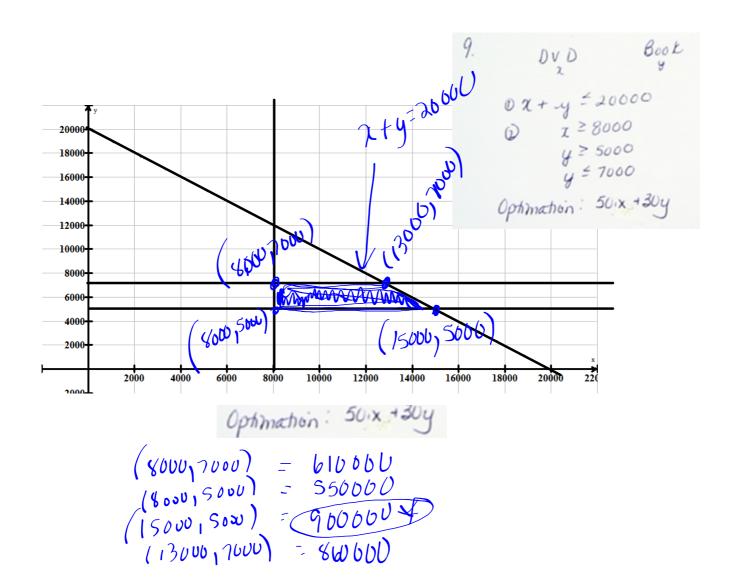
 y = # university griends

 χ + χ = 375

 χ = 2 χ

7. χ = # hot dogs

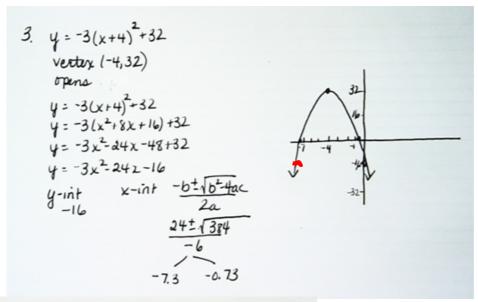

 χ = # hamburgers


 χ + χ = 300

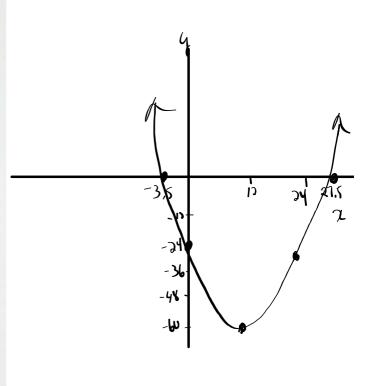
 χ = 350

 χ = 125

Optimization χ = 3x+2 χ



Unit 2: Quadratics


1.
$$y = -7x^2 - 126x - 700$$
 $y = -7(x^2 + 18x) - 700$
 $y = -7(x^2 + 18x + 81 - 81) - 700$
 $y = -7(x^2 + 18x + 81) + 567 - 700$
 $y = -7(x + 19x + 81) + 567 - 700$
 $y = -7(x + 19)^2 - 133$
opens down
 $(-9_1 - 133)$
range $y = -133$
max $9_1 - 133$
 $y - 104 - 700$

C. $y = \frac{1}{5}x^2 + 42 + 24$
 $y = \frac{1}{5}(x^2 + 20x + 100) - 20 + 24$
 $y = \frac{1}{5}(x^2 + 20x + 100) - 20 + 24$
 $y = \frac{1}{5}(x + 10)^2 + 4$
opens up
 $(-10) + 4$
range $y = 4$
mun $9_1 + 4$
 $y - 101 + 4$

Function remember y=a(x-h)2+k	a	Opens Up or down	Vertex (h,k)	Axis of symmetry	Range	Standard form	Max/ min	y- intercept
$y = -\frac{1}{3}(x-4)^2 - 11$	1/3	Down	(4,-11)	x=4	y 6-11	y= 3x2+3x-49	Max.	49/3
$y = 1.9(x+1)^2 + 18$	1.9	lip	(1,18)	X=4	4218	y= 19x2+38x+19.9	mig	19.9
$y = -x^2 + 6$	1	Down	(0,6)	x=0	y 46	y = -x2+6	max	6
$y=2(x-13)^2$	2	lep	(13,0)	X=13	4≥0	4 = 2x2 52x+338	min	0
$y = 14(x-10)^2 - 3.2$	14	ho	(10,-3.2)	X=10	y>32	4-14x-280x+1932	min 2	1432

2x(4x-3)+1(42-3)

(423) (2x+1)

4. vertex (9,3) (a) p+ (1,-13)	vertex (14,12) (b) p+ (8,660)	y-a(x-h)+K)
$y=a(x-9)^2+3$ -13=a(7-9)^2+3	$y = a(x-14)^{2}+12$ $660 = a(8-14)^{2}+12$	
$-13 = a(-2)^{2} + 3$ -16 = 4a	$640-12=a(-6)^2$ 648=369	
$a = -4$ $y = -4(x-4)^{2} + 3$	$18 = a$ $y = 18(x-14)^{2} + 12$	
$5-6) x^2-14x+45 51$ (x-9)(x-5)	(e) x2-144 DS	Simple trinomia
(b) $3x^2+16x-12$ H1 $3x^2+18x-2x-12$	(1) $9x^{2}-100$ DS	hard trinomial
3x(x+6)-2(x+6) (x+6)(3x+2)	(3x-10)(3x+10) (g) 9x2-6x-8 HT	diff. of Squares
(x+8) (x-7)	$9x^{2}-12x+6x-8$ 3x(3x-4)+2(3x-4)	·
(1) $8x^{2}-2x-3$ (1) $8x^{2}-6x+4x-3$	(3x-4)(3x+2) (4) $12x^2+16x+5$	
しん 一切 メナイル ニ	$12x^{2} + 10x + 6x + 5$	

12x2+10x+6x+5

2x(6x+5) +1(6x+5)

(6x+5)(2x+1)

Simple trinomial hard frinsmials (cecomposition) diff. of Squares

h= 5(t-4)2+34

min height = 3.4 m

6. (a)
$$8 \times (x-5) - 7(2-3x) = 3x + 7$$

$$8 \times^{2} - 40x - 14 + 21x = 3x + 7$$

$$8 \times^{2} - 22x - 21 = 0$$
6. (b) $-x^{2} + 3x + 2 = -3x^{2} - 2x + 4$

$$2x^{2} + 5x - 2 = 0$$
or Quad Form
$$-5 + \sqrt{41}$$

$$4$$

$$0.35 - 2.85$$
7. (a) $h = 5t^{2} - 40t + 83.4$

$$h = 5(t^{2} - 8t) + 83.4$$

$$h = 5(t^{2} - 8t) + 83.4$$

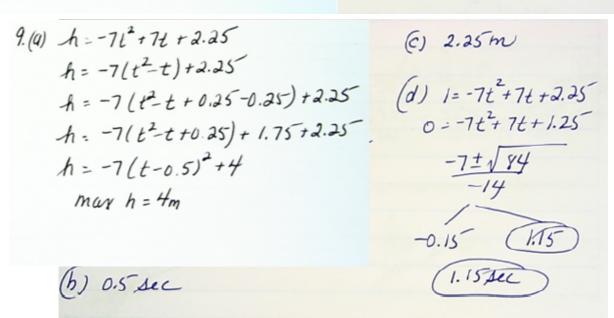
$$h = 5(t^{2} - 8t + 16) - 80 + 83.4$$
(b) When $t = 0$

$$h = 5(0)^{2} - 40(0) + 83.4$$

$$h = (33.4)$$

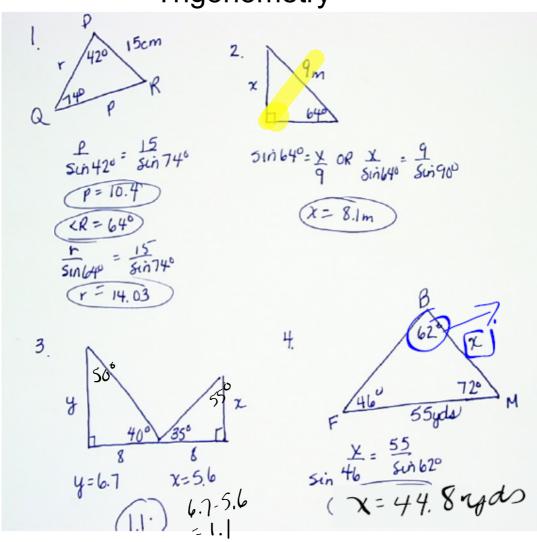
$$h = (31.4)$$

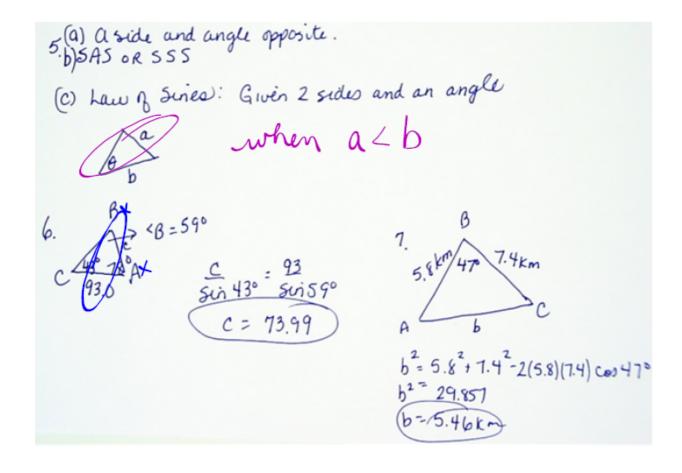
$$h = (31.4)$$


$$h = (31.4)$$

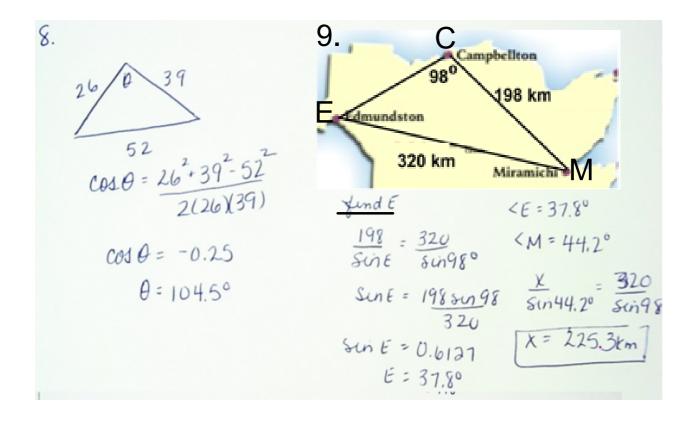
$$h = (31.4)$$

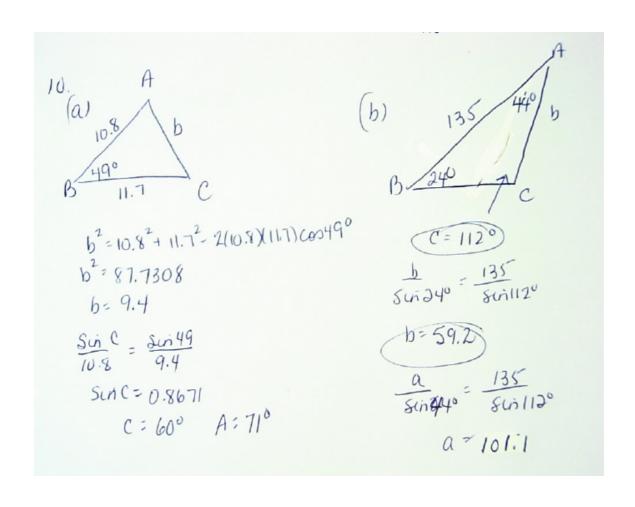
0=5t2-40t+78.4


40± √32 3.4 sec 10 4.6 sec


8.(a)
$$h_3 - 9.8t^2 + 58.8t + 67.2$$

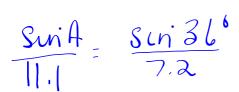
 $h = -9.8(t^2 - 6t) + 67.2$
 $h = -9.8(t^2 - 6t + 9 - 9) + 67.2$
 $h = -9.8(t^2 - 6t + 9) + 88.2 + 67.2$
 $h = -9.8(t^2 - 6t + 9) + 88.2 + 67.2$
 $h = -9.8(t^2 - 6t + 9) + 88.2 + 67.2$
 $h = -9.8(t^2 - 6t + 9) + 88.2 + 67.2$
 $h = -9.8(t^2 - 6t + 9) + 88.2 + 67.2$
 $h = -9.8(t^2 - 6t + 9) + 88.2 + 67.2$
 $h = -9.8(t^2 - 6t + 9) + 88.2 + 67.2$
 $h = -9.8(t^2 - 6t + 9) + 88.2 + 67.2$
 $h = -9.8(t^2 - 6t + 9) + 88.2 + 67.2$
 $h = -9.8(t^2 - 6t + 9) + 88.2 + 67.2$
 $h = -9.8(t^2 - 6t + 9) + 88.2 + 67.2$
 $h = -9.8(t^2 - 6t + 9) + 88.2 + 67.2$

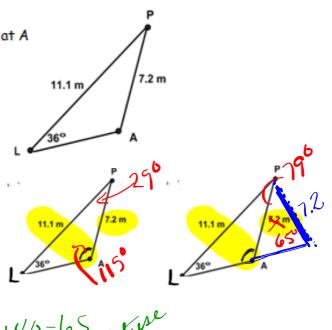


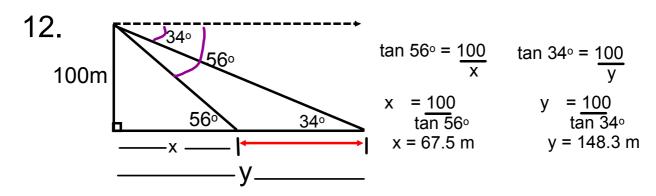

10.(a)
$$h = -4.9t^2 + 29.4t - 7.9$$

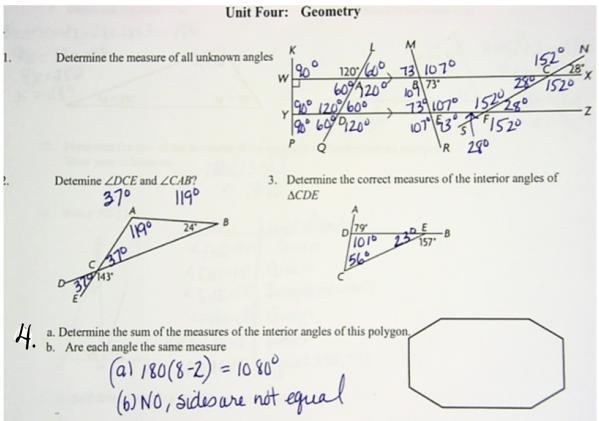
 $M = -4.9(t^2 - 6t) - 7.9$
 $-4.9(t^2 - 6t + 9) - 7.9$
 $-4.9(t^2 - 6t + 9) + 44.$ -7.9
 $-4.9(t^2 - 6t + 9) + 44.$ -7.9
 -9.8
1.49 4.51
 -9.8
(b) 3sec (e) when $x_0 h = 0$
 $-29.4 \pm \sqrt{109.52}$
 -9.8
 $-29.4 \pm \sqrt{109.52}$

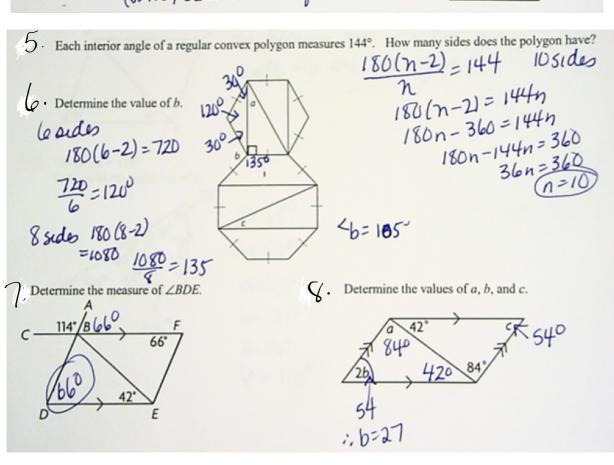
Trigonometry

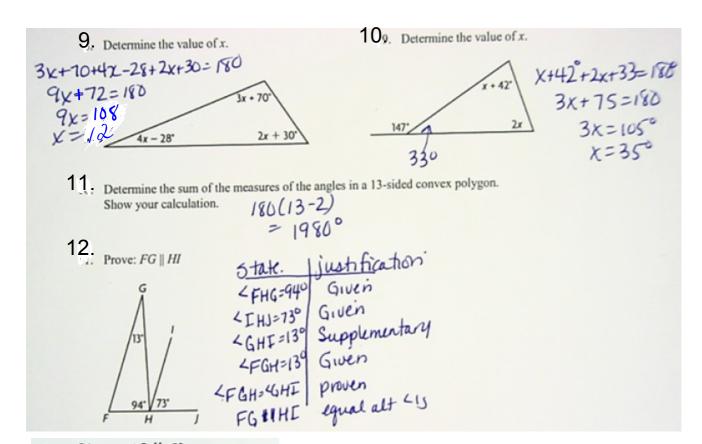


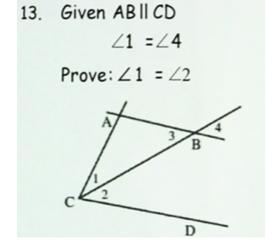




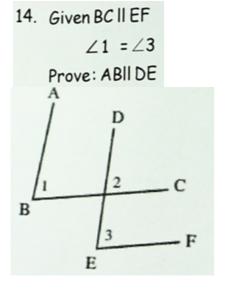

11. Determine the measure of the obtuse angle at A in triangle PAL

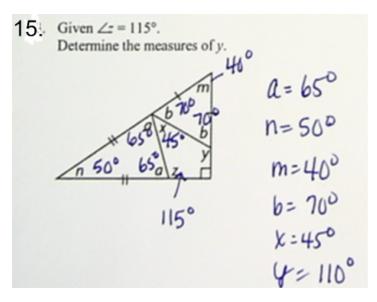


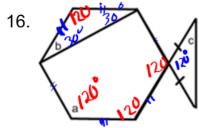




148.3m - 67.5m = 80.8m







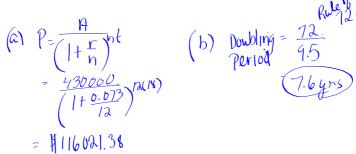
reason
given
guen
Corresp. 215.
transitue

Statement	teason
BC 11 EF	guen
4=43	guien
42 = 43	Corresp. LIS
41=42	transitive
ABIIDE	equal corr. 45
	V

Each $\frac{180(n-2)}{n}$ $\frac{180(6-2)}{6} = 120^{\circ}$

Unit 5: Financial

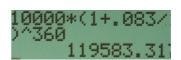
1. Patrick purchased a \$15000 GIC for 12 years with a simple interest rate of 3.7%. What is his GIC


- Wendy sold her acre of land by the river for \$35 000, she plans to invest the money for 20 years. Her options are:
- Option A: 20-year bond at 4.5%, compounded semi-annually.
 Option B: 10-year GIC at 3.1%, compounded semi-annually; reinvest funds in a 10-year GIC at 5.1%, compounded quarterly.

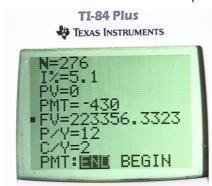
 Determine the future value of each investment
- b. Determine the rate of return (round to the nearest tenth of a percent) for each investment

Option A:

$$A = P(1+\frac{1}{1})$$
 $= 35000(1+\frac{0.045}{2})$
 $= 35000(1+\frac{0.045}{2})$
 $= 35000(1+\frac{0.045}{2})$
 $= 35000(1+\frac{0.045}{2})$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 47606.54$
 $= 4$


- a. How much should your parents have invested when you were born if interest rates were 7.3% compounded monthly if they wished to have 430000 for your $18^{\mbox{\tiny th}}$ birthday for school.
- b. Approximately how long would it take for a sum of money to double if it is invested at 9.5%

- Sylvia opened this portfolio when she turned 25.
 - A \$10 000 bond earning 8.3%, compounded monthly


 What will be the value of the portfolio when she turns 559 Show your work.

+ \$265906.77 \$119583.31 \$385490.08

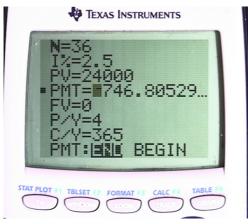
Barney Rubble regularly deposits \$430 per month into a Registered Retirement Savings Plan (RRSP) for his retirement. How much money will he have when he retires in 23 years, knowing that the interest rate is 5.1% compounded semi-annually?

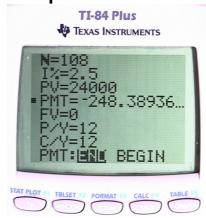
\$223356.33

Cynthia wants to purchase a used car 12300 plus HST of 13%/a, she can afford monthly payments of \$275 if the car dealer offers her a finance plan of 5.8% compounded daily, how long will it take her to pay it off?

6) 12300 + HST = 13899

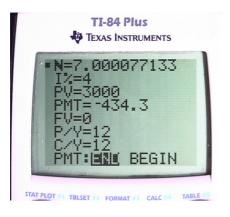
49 payments


- The Wilsons are buying a house that costs \$260 000. They will finance the purchase with a 25 year mortgage with an interest rate of 3.75%, compounded semi-annually. They must make a down payment of \$75000.
- a) How much will each payment be? Show your work.
- b) How much interest will Debbie end up paying by the time she has paid off the loan? Show your work.
- c) How much will she pay altogether for the house? Show your work.


(b) 948,23 x 12 x 25 = 284469 is what she paid, She mortgaged \$185000. 284469-185000 = \$99469 intrest

(C) 260000 or 185000+75000 + 99469 M359469 mortgage downant Interest

8. option A


payment \$746.81 quarterly for 9 years \$746.81x4x9 = \$26885.16 option B

payment \$248.39 monthly for 9 years \$248.39x12x9 = \$26933.04

\cheaper

9.

7 payments

7 months

a. 7x\$434.30 = \$3040.10

b. \$40.10 interest