Warm-Up

A wheel has radius 30 cm . It rolls along the ground toward a tack that is 58 cm from the point where the wheel currently touches the ground
What is the distance, d , between the tack and the closest point on the circumference of the wheel? Give the answer to the nearest tenth of a centimetre.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
& =30^{2}+54^{2} \\
& \therefore 900+3364 \\
c^{2} & =4264 \\
c & =65.3 \mathrm{~cm}
\end{aligned}
$$

SECTION 8.2 PROPERTIES OF A CHORD

A line segment that joins two points on a circle is a CHORD.

A diameter of the circle is a chord that goes through the center of the circle.

Where is the tangent?

A perpendicular bisector intersects a line segment at 90° and divides the line segment into two equal parts.

Properties of a CHORD

1. Perpendicular to chord Property 1

The perpendicular from the center of a circle to a chord bisects the chord [that is the perpendicular divides the chord into two equal parts.]

$A C=C B$

$\angle \mathrm{ACO}=\angle \mathrm{BCO}$

Perpendicular to Chord Property 2

The perpendicular bisector of a chord in a circle passes through the center of the circle.

When $P R=Q R$ and $\angle S R P=<S R Q$ then $S R$ passes through O [the center of the circle]

3. Perpendicular to Chord Property 3

A line that joins the center and the midpoint of a chord is perpendicular to the chord.
$E G=G F$

Let's apply these properties of a chord... Find the value of y and x

$$
\begin{aligned}
& x^{0}=33^{6} \\
& y^{0}=57^{0} \\
& 33+90+=180
\end{aligned}
$$

©
$A B$ is a diameter with a length of 26 cm .
$C D$ is a chord that is 10 cm from the circle
Find the length of $C D$. Give the answer to the nearest tenth.

$$
\begin{aligned}
& a^{2}=6^{2}-b^{2} \\
& a^{2}=13^{2}-10^{2} \\
& a^{2}=169-100 \\
& a^{2}=69 \\
& a=8.3
\end{aligned}
$$

b)

b)

Page 397
\#5 b.

$$
\begin{array}{ll}
a^{2}=c^{2}-b^{2} & \\
a^{2}=7^{2}-4^{2} & b=11.489 \\
a^{2}=49-16 & b=11.5 \\
a=33 &
\end{array}
$$

$$
\begin{aligned}
& a=3 \\
& a=5.74
\end{aligned}
$$

