

9)
$$\frac{1}{3}$$
 of $15=5$

2)
$$10\%$$
 of 4% = 4.2 10) $55+125$ = 180 3) 20% of $25=5$ = 4.6

2. Find the area of each parallelogram.

$$A = bh$$
= 13(24)
= 312 cm²

$$A=bh$$
 bkh $A=bh$ = 15(13) = 312cm² = 195mm²

6. Use the given area to find the base or the height of each parallelogram.

$$30 = 6(5)$$
 $b = \frac{30}{5}$
 $= 6 \text{ cm}$

- Take It Further A restaurant owner built a patio in front of his store to attract more customers.
 - a) What is the area of the patio?
 - b) What is the total area of the patio and gardens?
 - c) How can you find the area of the gardens? Show your work.

When we draw a diagonal in a parallelogram, we make 2 congruent triangles.

Congruent triangles have the same area.

The area of the two congruent triangles is equal to the area of the parallelogram.

So, the area of one triangle is $\frac{1}{2}$ the area of the parallelogram.

$$A_{\lambda} = \frac{bh}{2}$$

Example

Find the area of each triangle.

For an obtuse triangle, the height might be drawn outside the triangle.

$$4-\frac{1}{2}$$

= 17(9)
= 153
= 76.5 cm²

$$A = \frac{6h}{2}$$

$$= \frac{3.14(4.2)}{2}$$

$$= \frac{13.02}{2}$$

$$= 651m^{2}$$

$$A = \frac{bh}{2}$$

$$18 = (9) + 2$$
h =

$$\begin{array}{ccc}
 18 = (9)h \\
 \hline
 2
 \end{array}
 \qquad
 \begin{array}{cccc}
 A = b(h) = 2 \\
 18 = 9(h) = 2
 \end{array}$$

