1) BEDMAS: $2+4 \times 3$

2) $97-11,86$
3) $1 / 2$ of $45^{-}-22 \frac{1}{2} \quad 22.5$
4) $900 \div 10=90$
5) $75 \div 5=15$
6) $123 \times 10=1230$
7) $90 \times 2=186$
8) $6 \times 25=1.50$
9) $5005 \div 5=1001$
10) $275 \div 25=11$

Use models.

1. Find equivalent fractions with like denominators for each pair of fractions.
a) $\frac{1 \times 4}{2}$ and $\frac{5}{8}$
b) $\frac{1}{4}$ and $\frac{1}{3}$
c) $\frac{2}{3}{ }_{9 n}^{2} d \frac{1}{6}$
d) $\frac{3}{5} \times \ln ^{2}$ d $\frac{1}{2} \times 5$
$\frac{4}{8}: \frac{5}{3}$
12
$\frac{4}{6}$

$$
\frac{1 \times 2}{2 \times 2}
$$

2. Is each difference less than $\frac{1}{2}$ or greater than $\frac{1}{2}$? How can you tell?

3. Subtract. Sketch pictures to show each difference.

b) $\frac{4}{5}-\frac{1}{5}-\frac{3}{5}$
c) $\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$
d) $\frac{5}{8}-\frac{3}{8}=\frac{2}{8} \div 2=\frac{1}{4}$

4. Subtract. Sketch pictures to show each difference.
a) $\frac{3}{8}-\frac{1}{4} 2$
b) $\frac{7}{10}-\frac{1}{2}$
c) $\frac{7}{8}-\frac{1}{2}$
d) $\frac{5}{6}-\frac{1}{4}$

c) $\frac{7}{8}-\frac{1 \times 4}{2 \times 4}=\frac{3}{8}$

5. Sergio has the lead role in the school play. He still has to memorize $\frac{1}{2}$ of his lines.
Suppose Sergio memorizes $\frac{1}{3}$ of his lines today.
What fraction of his lines will he have left to memorize?
Show your work.

$$
\begin{array}{ll}
\frac{1 x^{3}}{2}-\frac{1}{3 x^{2}} & \text { He has to } \\
\frac{3}{6}-\frac{2}{6}=\frac{1}{6} & \text { memorize } \frac{1}{6}
\end{array}
$$

8. Freida has $\frac{3}{4}$ of a bottle of ginger ale.

She needs $\frac{1}{2}$ of a bottle of ginger ale for her fruit punch.
How much will be left in the bottle after Freida makes the punch?
9. A cookie recipe calls for $\frac{3}{4}$ cup of chocolate chips.

Spencer has $\frac{2}{3}$ cup. Does he have enough?
If your answer is yes, explain why it is enough.
If your answer is no, how much more does Spencer need?

$$
\begin{aligned}
& \frac{3}{4 \times 3}-\frac{2}{3} \times+ \\
& \frac{9}{12}-\frac{8}{12}=\frac{1}{12}
\end{aligned}
$$

10. Copy and replace each \square with a digit, to make eachequation true. Try to dp this more thanlde way.
a) $\frac{2}{3}-\frac{\square}{3}=\frac{1}{3}$

Use equivalent fractions to subtract.
Write $\frac{4}{5}$ and $\frac{1}{3}$ with a common denominator.
List the multiples of $5: 5,10,15,20,25, \ldots$
List the multiples of $3: 3,6,9,12,15,18, \ldots$
15 is a multiple of 5 and 3 , so 15 is a common denominator.

and

Think: 12 fifteenths minus
5 fifteenths is 7 fifteenths.

Subtract.

$\begin{array}{ll}\text { a) } \frac{9}{10}-\frac{2}{5} & \text { b) } \frac{5}{4}-\frac{1}{5}\end{array}$
Estimate to check the answer is reasonable.

Write all differences in simplest form.

1. Subtract.
a) $\frac{4}{5}-\frac{2}{5}=\frac{2}{5}$
b) $\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$
c) $\frac{7}{9}-\frac{4}{9}=\frac{3}{9} \cdot:_{i=3}^{i 3}=\frac{1}{3}$ d) $\frac{5}{7}-\frac{3}{7}=\frac{2}{7}$
2. Estimate, then subtract.
a) $\frac{2}{3+2}-\frac{1}{6}$
b) $\frac{5}{8}-\frac{1}{2}$ y 4
c) $\frac{3}{2} \times \frac{6}{2}-\frac{7}{10}$
d) $\frac{11}{12}-\frac{5}{6} x^{2}$
3. $\frac{4}{4}$ titrated $\frac{1}{6}=3=\frac{3}{2}$
$\frac{5}{8}-\frac{4}{8}=\frac{1}{8}$
$\frac{15}{10}-\frac{7}{10}=\frac{8: 2}{10: 2}=\frac{4}{5} \quad \frac{11}{12}-\frac{10}{12}=\frac{1}{12}$
a) $\frac{3}{4} x^{3} \frac{2}{3} \times 4$
b) $\frac{4}{5 \times 3}-\frac{2}{3} \times 5$
c) $\frac{7}{4} \times 6^{\frac{4}{5}} \times 4$
d) $\frac{3}{5}-\frac{1}{2} \times 5$
4. $\frac{9}{1^{2}}-\frac{8}{1^{2}}=\frac{1}{12}$
$\frac{12}{15}-\frac{10}{15}=\frac{2}{15}$
Estimate to check the answer is reasonable.
a) $\frac{4}{6}-\frac{1}{2} \times 3$
b) $\frac{5}{3} 34 \frac{4}{4} \times 3$
c) $\frac{7 x}{5}-\frac{5}{6} \times 5$
5. A recipe calls for $\frac{4}{4}$ cup of walnuts and $\frac{4}{3}$ cup of pecans. $\frac{\frac{42}{30}-\frac{25}{30}=\frac{17}{30}, ~}{1}$ Which type of nut is used more in the recipe? How much more?

6. Assessment Focus On Saturday, Terri biked for $\frac{5}{6} \mathrm{~h}$.

On Sunday, Terri increased the time she biked by $\frac{7}{12} \mathrm{~h}$.
On Saturday, Bastion biked for $\frac{1}{2} \mathrm{~h}$.
On Sunday, Bastion increased the time he biked by $\frac{3}{4} \mathrm{~h}$.
a) Who biked longer on Sunday?

How can you tell?
b) For how much longer did this person bike?
c) What did you need to know about fractions to answer these questions?
7. Write as many different subtraction questions as you can where the answer is $\frac{3}{4}$. Show your work.

8. The difference of 2 fractions is $\frac{1}{2}$.

The lesser fraction is between 0 and $\frac{1}{4}$.
What do you know about the other fraction?

