

What is a repeating decimal? Give an example.

What is a terminating decimal? Give an example.

3.2

Comparing and Ordering Fractions and Decimals

Focus

Use benchmarks, place value, and equivalent fractions to compare and order fractions and decimals.

Recall how to use the benchmarks $0, \frac{1}{2}$, and 1 to compare fractions. For example, $\frac{3}{20}$ is close to 0 because the numerator is much less than the denominator.

 $\frac{11}{20}$ is close to $\frac{1}{2}$ because the numerator is about $\frac{1}{2}$ the denominator,

 $\frac{19}{20}$ is close to 1 because the numerator and denominator are close in value

 $\frac{17}{25}$, $\frac{4}{25}$, $\frac{24}{25}$

135

Use any materials to help.

6.6

Dusan, Sasha, and Kimberley sold chocolate bars as a fund-raiser for their choir.

The bars were packaged in cartons, but sold individually.

Dusan sold $2\frac{2}{3}$ cartons. Sasha sold $\frac{5}{2}$ cartons. Kimberley sold 2.25 cartons.

Who sold the most chocolate bars?

$$2^{\frac{1}{2}} = 2.6 - Dusun sold the most.$$

$$5 = 2.5$$

$$2.5$$

Example

a) Write these numbers in order from least to greatest: $\frac{7}{8}$, $\frac{9}{8}$, $1\frac{1}{4}$, 0.75

We can also use place value to order decimals.

a) Write each number as a decimal.

$$\frac{7}{8} = 0.875$$

$$\frac{9}{8} = 1.125$$

$$1\frac{1}{4} = 1.25$$

Write each decimal in a place-value chart.
Compare the ones.
Two numbers have
1 one and two numbers have 0 ones.

Ones	Tenths	Hundredths	Thousandths
0	8	7	5
1 (1	2	5
1 (2	5	0
0	7	5	0

Look at the decimals with 0 ones: 0.875, 0.750

Compare the tenths: 7 tenths is less than 8 tenths, so 0.750 < 0.875

Look at the decimals with 1 one: 1.125 and 1.250

Compare the tenths: 1 tenth is less than 2 tenths, so 1.125 < 1.250

2. Use 1-cm grid paper.

Draw a 12-cm number line like the one shown.

Use the number line to order these numbers from greatest to least.

3. Use benchmarks and a number line to order each set of numbers from least to greatest.

a)
$$\frac{7}{6}$$
, $\frac{15}{12}$, $1\frac{2}{9}$, 1

b)
$$1\frac{3}{4}, \frac{7}{3}, \frac{7}{6}, 2$$

c)
$$\frac{7}{4}$$
, $\frac{15}{10}$, $\frac{11}{5}$, $\frac{1}{5}$

c)
$$\frac{7}{4}$$
, $\frac{15}{10}$, $\frac{11}{5}$, 2 d) $\frac{10}{4}$, $2\frac{1}{3}$, $\frac{9}{2}$, 3

$$\frac{11}{3}$$
: 3.6
 $2\frac{5}{6}$: 2.83

$$2\frac{5}{6} = 2.83$$

4. Use equivalent fractions.

Order each set of numbers from greatest to least.

Verify by writing each fraction as a decimal.

a)
$$3\frac{1}{2}, \frac{13}{4}, 3\frac{1}{8}$$

a)
$$3\frac{1}{2}, \frac{13}{4}, 3\frac{1}{8}$$
 b) $\frac{5}{6}, \frac{2}{3}, 1\frac{1}{12}, \frac{9}{12}$ c) $1\frac{2}{5}, \frac{4}{3}, \frac{3}{2}$

c)
$$1\frac{2}{5}, \frac{4}{3}, \frac{3}{2}$$

5. Use place value.

Order each set of numbers from least to greatest.

Verify by using a number line.

a)
$$\frac{7}{4}$$
, 1.6, $1\frac{4}{5}$, 1.25,

a)
$$\frac{7}{4}$$
, 1.6, $1\frac{4}{5}$, 1.25, 1 b) $2\frac{5}{8}$, 1.875, $2\frac{3}{4}$, $\frac{5}{2}$, 2

94 UNIT 3: Fractions, Decimals, and Percents 7. Find a number between the two numbers represented by each pair of dots.

- **8.** Find a number between each pair of numbers.
 - a) $\frac{5}{7}, \frac{6}{7}$
- **b)** $1\frac{2}{5}, \frac{8}{5}$
- c) $1.3, 1\frac{2}{5}$
- **d)** 0.5, 0.6
- **9.** Identify the number that has been placed incorrectly. Explain how you know.

- **b)** Write a fraction between $\frac{9}{8}$ and $1\frac{1}{4}$.
- **b)** $\frac{9}{8} = 1.125$ $1\frac{1}{4} = 1.25$

$$1\frac{1}{4} = 1.25$$

Use the number line above.

1.2 lies between 1.125 and 1.25.

Write 1.2 as a fraction.

1.2 is
$$1\frac{2}{10}$$
, or $1\frac{1}{5}$.

So, $1\frac{1}{5}$, or $\frac{6}{5}$, lies between $\frac{9}{8}$ and $1\frac{1}{4}$.

There are many other possible fractions between $\frac{9}{8}$ and $1\frac{1}{4}$.